LECTURE 7: Neural network approaches ML-4430: Machine learning approaches in climate science 9 June 2021 # **Weather Forecast Postprocessing** - Rasp & Lerch, 2018 - Scher & Messori, 2018 - Grönquist et al., 2020 # Data-Driven Climate Modeling - 3 - Scher, 2018 - Scher & Messori, 2020 - Rasp & Thuerey, 2021 ## Climate Model Parametrisation - Krasnopolsky, Fox-Rabinovitz & Belochitski, 2013 - Rasp, Pritchard & Gentine, 2018 - Yuval, O'Gorman & Hill, 2021 ## ENSO Forecasting - Ham, Kim & Luo, 2019 - Mahesh et al., 2019 - Cachay et al., 2021 Outline # ⁶Neural Networks for Postprocessing Ensemble Weather Forecasts ⁶ #### STEPHAN RASP Meteorological Institute, Ludwig-Maximilians-Universität, Munich, Germany #### SEBASTIAN LERCH Institute for Stochastics, Karlsruhe Institute of Technology, Heidelberg Institute for Theoretical Studies, Karlsruhe, Germany (Manuscript received 23 May 2018, in final form 14 August 2018) ## Main idea ... - Weather model output typically is biased - Trends, wet / dry or warm / cold biases - To remove this bias we need to infer a relation between the weather forecast and the real observations - Traditionally, this has been done using regression models - Here, the authors use neural networks ## Data - Forecast data: - THORPEX Interactive Grand Global Ensemble (TIGGE) dataset - Forecasts for surface stations in Germany at lead times of 48 h - ECMWF 50-member ensemble forecasts initialized at 0000 UTC every day - Upscaled onto a 0.58 3 0.58 grid - > 2 m temperature, plus auxiliary variables - Observation data: - > 537 weather stations in Germany - > 2 m temperature only - Training: 2007 2015 & 2015 only - Test: 2016 FIG. 2. Locations of DWD surface observation stations. The grayscale values of the points indicate the altitude (m). TABLE 1. Abbreviations and descriptions of all features. | Feature | Description | | | | | |---|------------------------------|--|--|--|--| | Ensemble predictions (mean and std dev) | | | | | | | t2m | 2-m temperature | | | | | | cape | Convective available | | | | | | | potential energy | | | | | | sp | Surface pressure | | | | | | tcc | Total cloud cover | | | | | | sshf | Sensible heat flux | | | | | | slhf | Latent heat flux | | | | | | u10 | 10-m U wind | | | | | | v10 | 10-m V wind | | | | | | d2m | 2-m dewpoint temperature | | | | | | ssr | Shortwave radiation flux | | | | | | str | Longwave radiation flux | | | | | | sm | Soil moisture | | | | | | u_pl500 | U wind at 500 hPa | | | | | | v_pl500 | V wind at 500 hPa | | | | | | u_pl850 | U wind at 850 hPa | | | | | | v_pl850 | V wind at 850 hPa | | | | | | gh_pl500 | Geopotential at 500 hPa | | | | | | q_p1850 | Specific humidity at 850 hPa | | | | | | Stati | on-specific information | | | | | | station_alt | Altitude of station | | | | | | orog | Altitude of model grid point | | | | | | station_lat | Lat of station | | | | | | station_lon | Lon of station | | | | | $$y_{s,t} | \mathbf{X}_{s,t}^{t2m} \sim \mathcal{N}_{(\mu_{s,t},\sigma_{s,t})}$$ the top part of Table 1 are combined with station-specific features in the bottom part, and aggregated into a vector of predictors $\mathbf{X}_{s,t} \in \mathbb{R}^p$, p = 42. Further, we write $\mathbf{X}_{s,t}^{t2m}$ to denote the vector of predictors that only contains the mean value and standard deviation of the 2-m temperature forecasts. Ensemble predictions (mean and std dev) t2m 2-m temperature Convective available cape potential energy Surface pressure sp Total cloud cover tcc Sensible heat flux sshf slhf Latent heat flux 10-m U wind 1110 10-m V wind v10 d2m 2-m dewpoint temperature Shortwave radiation flux ssr Longwave radiation flux str Soil moisture sm u pl500 U wind at 500 hPa v_pl500 V wind at 500 hPa u_pl850 U wind at 850 hPa v_pl850 V wind at 850 hPa gh_pl500 Geopotential at 500 hPa Specific humidity at 850 hPa q_pl850 Station-specific information station alt Altitude of station Altitude of model grid point orog station lat Lat of station station_lon Lon of station | Model | Description | |-------|-------------| | | | Raw ensemble Benchmark postprocessing methods EMOS-gl Global EMOS EMOS-loc Local EMOS EMOS-loc-bst Local EMOS with boosting QRF Local quantile regression forest Neural network models FCN Fully connected network FCN-aux ...with auxiliary predictors FCN-emb ...with station embeddings FCN-aux-emb ...with both of the above NN-aux One-hidden-layer NN with auxiliary predictors NN-aux-emb ...and station embeddings FIG. 4. Observation station locations color coded by the best performing model (in terms of mean CRPS over calendar year 2016) for models trained on data from (left) 2015 and (right) 2007 to 2015. Point shapes indicate the type of model. FIG. 5. Feature importance for the 15 most important predictors. Note that the values for t2m_mean are divided by 10. See Table 1 for variable abbreviations and descriptions. ## To summarise ... - Neural networks were used to learn the relation between weather forecast output and observations - Weather forecast data augmented with additional features of weather stations were embedded for better performance - Neural network based method outperformed all other state-of-the-art post-processing methods - Randomisation of inputs allowed to infer the relevance of various features for the final output performance Received: 25 May 2018 Revised: 29 August 2018 Accepted: 01 October 2018 Published on: 26 November 2018 DOI: 10.1002/qj.3410 #### RESEARCH ARTICLE # Predicting weather forecast uncertainty with machine learning Sebastian Scher | Gabriele Messori Department of Meteorology and Bolin Centre for Climate Research, Stockholm University, Sweden Weather forecasts are inherently uncertain. Therefore, for many applications fore- # DEEP LEARNING FOR POST-PROCESSING ENSEMBLE WEATHER FORECASTS #### **PREPRINT** #### Peter Grönquist ETH Zürich petergro@student.ethz.ch #### Nikoli Dryden ETH Zürich nikoli.dryden@inf.ethz.ch #### Chengyuan Yao ETH Zürich chyao@student.ethz.ch ### **Peter Dueben** ECMWF peter.dueben@ecmwf.int #### **Torsten Hoefler** ETH Zürich htor@inf.ethz.ch #### Tal Ben-Nun ETH Zürich tal.bennun@inf.ethz.ch #### **Shigang Li** ETH Zürich shigang.li@inf.ethz.ch # Weather Forecast Postprocessing - Rasp & Lerch, 2018 - Scher & Messori, 2018 - Grönquist et al., 2020 # Data-Driven Climate Modeling - Scher, 2018 - Scher & Messori, 2020 - Rasp & Thuerey, 2021 ## **Climate Model Parametrisation** - Krasnopolsky, Fox-Rabinovitz& Belochitski, 2013 - Rasp, Pritchard & Gentine, 2018 - Yuval, O'Gorman & Hill, 2021 # **ENSO Forecasting** - Ham, Kim & Luo, 2019 - Mahesh et al., 2019 - Cachay et al., 2021 Outline Hindawi Publishing Corporation Advances in Artificial Neural Systems Volume 2013, Article ID 485913, 13 pages http://dx.doi.org/10.1155/2013/485913 ## Research Article # Using Ensemble of Neural Networks to Learn Stochastic Convection Parameterizations for Climate and Numerical Weather Prediction Models from Data Simulated by a Cloud Resolving Model Vladimir M. Krasnopolsky, 1,2 Michael S. Fox-Rabinovitz, and Alexei A. Belochitski 3,4 ¹ National Centers for Environmental Prediction, NOAA, College Park, MD 20740, USA ² Earth System Sciences Interdisciplinary Center, University of Maryland, College Park, MD 20740, USA ³ Geophysical Fluid Dynamics Laboratory, NOAA, Princeton, NJ 08540, USA ⁴ Brookhaven National Laboratory, Upton, NY 11973, USA ## Main idea ... - General circulation models are necessarily required to parametrise several aspects of climate dynamics - An important parametrisation is cloud dynamics - Cloud resolving models (CRMs) are typically very high resolution and time consuming - Here, the authors propose to learn the parametrisation from CRM data using neural networks ## Data and models used ... - TOGA-COARE - the international observational experiment in the tropics conducted for the 4-month period from November 1992 to February 1993) - horizontal resolution of 1 km - 64 or 96 vertical layers - > time integration step of 5 s - Integrate CRM over a domain of 256 x 256 km - Basic plan: - Run CRM - Make "pseudo-observations" from CRM onto the variable set and resolution of GCMs - Train neural networks with pseudoobservations # Neural network setup ... - Simulation details: - CRM run for 120 (model) days - Output aggregated to hourly resolution - Approx 2800 data points - > 80:20 split for training and test data - 2240 data points for training - > 560 data points for test - Final choice for number of hidden neurons (HID) is 5 TABLE 1: NN architecture (inputs and outputs) investigated in the paper. | NN architecture | NN inputs | | NN outputs | | | | |-----------------|-----------|----|------------|----|------|-----| | In: out | T | QV | Q1C | Q2 | PREC | CLD | | 36:55 | 18 | 18 | 18 | 18 | 1 | 18 | T is temperature, QV is atmospheric moisture—vapor mixing ratio, QIC: the "apparent heat source," Q2: the "apparent moist sink," PREC: precipitation rates, and CLD: cloudiness. Numbers in the table show the dimensionality of the corresponding input and output parameters. In: Out stand for NN inputs and outputs and show their corresponding numbers. TABLE 2: The number of fitting parameters (NN weights), N_C , at different values of HID = k (see (3)). | | HID | | | | | | | |-------|-----|-----|-----|------|------|------|--| | | 1 | 2 | 5 | 10 | 15 | 20 | | | N_C | 166 | 273 | 594 | 1129 | 1667 | 2199 | | FIGURE 5: Q1C (the apparent heat source from convection) mean profiles on the test set produced by different NN ensemble members. The different curves presented in the figure correspond to different ensemble members; the thick solid line shows the verification data in the test set. FIGURE 7: Three different mean cloud (CLD) profiles for the TOGA-COARE period: CAM-NN (thick solid), pseudo-observations (dashed), and CAM (solid). FIGURE 9: Vertical profiles of decadal boreal winter mean CLD for the TOGA-COARE location, in fractions, for the CAM-NN (open circles) and CAM (full circles) runs. Atmospheric pressure in hPa is the vertical coordinate. FIGURE 8: Precipitation (PREC, in mm/day) time series: CAM (black solid) and CAM-NN (or NCAM) ensemble mean (red dashed). ### To summarise ... - Cloud dynamics were parametrised using neural networks - The neural network was trained to learn the relation between CRM and GCM - Proof-of-concept study demonstrated with the TOGA-COARE CRM and the CAM models - Results between the neural network parametrisations and the standard parametrisations were comparable # Deep learning to represent subgrid processes in climate models Stephan Rasp^{a,b,1}, Michael S. Pritchard^b, and Pierre Gentine^{c,d} ^aMeteorological Institute, Ludwig-Maximilian-University, 80333 Munich, Germany; ^bDepartment of Earth System Science, University of California, Irvine, CA 92697; ^cDepartment of Earth and Environmental Engineering, Earth Institute, Columbia University, New York, NY 10027; and ^dData Science Institute, Columbia University. New York, NY 10027 Edited by Isaac M. Held, Geophysical Fluid Dynamics Laboratory, National Oceanic and Atmospheric Administration, Princeton, NJ, and approved August 8, 2018 (received for review June 14, 2018) The representation of nonlinear subgrid processes, especially extremes. Further increasing the resolution to a few hundred # **Geophysical Research Letters** #### RESEARCH LETTER 10.1029/2020GL091363 #### **Key Points:** - Neural-network parameterization gives stable simulations that replicate climate of idealized simulation of atmosphere at high resolution - Separate predictions of the effect of each subgrid process allows physical constraints to be incorporated into the parameterization - Parameterization with reduced numerical precision can decrease computational demands without affecting the simulated climate Use of Neural Networks for Stable, Accurate and Physically Consistent Parameterization of Subgrid Atmospheric Processes With Good Performance at Reduced Precision Janni Yuval¹, Paul A. O'Gorman¹, and Chris N. Hill¹ ¹Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA **Abstract** A promising approach to improve climate-model simulations is to replace traditional subgrid parameterizations based on simplified physical models by machine learning algorithms that are data-driven. However, neural networks (NNs) often lead to instabilities and climate drift when coupled # Weather Forecast Postprocessing - Rasp & Lerch, 2018 - Scher & Messori, 2018 - Grönquist et al., 2020 # **Data-Driven Climate Modeling** - 3 - > Scher, 2018 - Scher & Messori, 2020 - Rasp & Thuerey, 2021 ## **Climate Model Parametrisation** - Krasnopolsky, Fox-Rabinovitz & Belochitski, 2013 - Rasp, Pritchard & Gentine, 2018 - Yuval, O'Gorman & Hill, 2021 # **ENSO Forecasting** - Ham, Kim & Luo, 2019 - Mahesh et al., 2019 - Cachay et al., 2021 Outline # **Geophysical Research Letters** ### **RESEARCH LETTER** 10.1029/2018GL080704 #### **Key Points:** - A neural network can emulate the dynamics of a simple general circulation model - The trained network can successfully forecast the model weather - The network can produce a realistic representation of the model climate # Toward Data-Driven Weather and Climate Forecasting: Approximating a Simple General Circulation Model With Deep Learning S. Scher¹ ¹Department of Meteorology and Bolin Centre for Climate Research, Stockholm University, Stockholm, Sweden ## Main idea ... - Proof-of-concept that neural networks can emulate the dynamics of a general circulation model - Simplified model (PUMA) with coarse resolution - no seasonal cycle (eternal Northern Hemispheric winter) - No orography, - horizontal resolution of T21(~625 km, 32 × 64 grid points when projected on a regular latlon grid) - 10 vertical levels - no diurnal cycle - no ocean - > time step of 45 min **Figure 1.** Two model states of the PUMA model, separated by 5 days (from left to right). The upper row shows geopotential at 500 hPa (zg), and the lower row shows zonal wind at 300 hPa (ua). # Model setup ... - First 30 years of model run are discarded as spin-up years - 150 years of data are used - 100 years for training - > 20 years for validation - > 30 years for testing - Autoencoder network architecture - Combined with 2D convolutions and max pooling - High dimensional input and outputs - 40 channels x 2, 048 grid points = 81, 920 ## To summarise ... - A neural network was trained on the output of a simple atmospeheric climate model - The goal was to learn to emulate the dynamical behaviour of the atmosphere as modeled in the climate model - The neural network learns the dynamics successfully - The results from the neural network are slightly noisy but overall are convincing # JAMES Journal of Advances in Modeling Earth Systems #### RESEARCH ARTICLE 10.1029/2020MS002331 #### **Key Points:** - We test four different methods to transform a deterministic neural network weather forecasting system into an ensemble forecasting system - The ensemble mean of all methods is more skilful than a deterministic neural network forecast - The spread-error correlation of the four methods is comparable to that of numerical weather prediction (NWP) forecasts # **Ensemble Methods for Neural Network-Based Weather Forecasts** Sebastian Scher¹ and Gabriele Messori^{1,2} ¹Department of Meteorology and Bolin Centre for Climate Research, Stockholm University, Stockholm, Sweden, ²Department of Earth Sciences and Centre of Natural Hazards and Disaster Science (CNDS), Uppsala University, Uppsala, Sweden **Abstract** Ensemble weather forecasts enable a measure of uncertainty to be attached to each forecast, by computing the ensemble's spread. However, generating an ensemble with a good spread-error relationship is far from trivial, and a wide range of approaches to achieve this have been explored— # JAMES Journal of Advances in Modeling Earth Systems #### RESEARCH ARTICLE 10.1029/2020MS002405 #### **Key Points:** - A large convolutional neural network is trained for the WeatherBench challenge - Pretraining on climate model data improves skill and prevents overfitting - The model sets a new state-of-theart for data-driven medium-range forecasting # Data-Driven Medium-Range Weather Prediction With a Resnet Pretrained on Climate Simulations: A New Model for WeatherBench Stephan Rasp^{1,2} and Nils Thuerey¹ ¹Department of Informatics, Technical University of Munich, Munich, Germany, ²Now at ClimateAi, San Francisco, USA **Abstract** Numerical weather prediction has traditionally been based on the models that discretize the dynamical and physical equations of the atmosphere. Recently, however, the rise of deep learning ### Weather Forecast Postprocessing - Rasp & Lerch, 2018 - Scher & Messori, 2018 - Grönquist et al., 2020 #### Data-Driven Climate Modeling - Scher, 2018 - Scher & Messori, 2020 - Rasp & Thuerey, 2021 #### Climate Model Parametrisation - Krasnopolsky, Fox-Rabinovitz & Belochitski, 2013 - Rasp, Pritchard & Gentine, 2018 - Yuval, O'Gorman & Hill, 2021 # **ENSO Forecasting** - Ham, Kim & Luo, 2019 - Mahesh et al., 2019 - Cachay et al., 2021 Outline # LETTER https://doi.org/10.1038/s41586-019-1559-7 # Deep learning for multi-year ENSO forecasts Yoo-Geun Ham¹*, Jeong-Hwan Kim¹ & Jing-Jia Luo^{2,3} #### Main idea ... - Use CNNs to predict ENSO index values up to one and half years in advance - Overcome limited amount of observartions (in terms of El Niños and La Niñas) by - Training the CNN - On historical simulations - On reanalysis between 1871-1973 - Implicitly assumed - Statistical emulators can help predict ENSO behaiviour better than dynamical models - All dynamics are not knowable #### To summarise ... - CNNs were used to forecast ENSO index values - Input data were sea surface temperatures and oceanic heat content - CNNs were trained on both climate model output and reanalysis data - The neural network approach method outpferformed all other methods - Forecast skill was above 0.5 till around 16 months - Heatmap analysis revealed extratropical souther Pacific and Indian oceans as important predictors of ENSO # Forecasting El Niño with Convolutional and Recurrent Neural Networks Ankur Mahesh* ClimateAi Maximilian Evans ClimateAi Garima Jain ClimateAi Mattias Castillo ClimateAi Aranildo Lima ClimateAi Brent Lunghino Climate Ai Himanshu Gupta ClimateAi Carlos Gaitan ClimateAi Jarrett K. Hunt ClimateAi Omeed Tavasoli ClimateAi Patrick T. Brown ClimateAi San Jose State University **V. Balaji** Geophysical Fluid Dynamics Laboratory # The World as a Graph: Improving El Niño Forecasts with Graph Neural Networks Salva Rühling Cachay¹, Emma Erickson*², Arthur Fender C. Bucker*^{3, 4}, Ernest Pokropek*⁵, Willa Potosnak*⁶, Suyash Bire⁸, Salomey Osei⁷, and Björn Lütjens⁸ ¹Technical University of Darmstadt, ²University of Illinois at Urbana-Champaign, ³University of São Paulo, ⁴ Technical University of Munich, ⁵Warsaw University of Technology, ⁶Duquesne University, ⁷African Institute for Mathematical Sciences, ⁸Massachusetts Institute of Technology # **Weather Forecast Postprocessing** - Rasp & Lerch, 2018 - Scher & Messori, 2018 - Grönquist et al., 2020 ### **Data-Driven Climate Modeling** - 3 - Scher, 2018 - Scher & Messori, 2020 - Rasp & Thuerey, 2021 #### **Climate Model Parametrisation** - Krasnopolsky, Fox-Rabinovitz & Belochitski, 2013 - Rasp, Pritchard & Gentine, 2018 - Yuval, O'Gorman & Hill, 2021 # **ENSO Forecasting** - Ham, Kim & Luo, 2019 - Mahesh et al., 2019 - Cachay et al., 2021 Outline Q&A