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Main idea ...

~ Weather model output typically is biased
> Trends, wet / dry or warm / cold biases

> To remove this bias we need to infer a relation
between the weather forecast and the real
observations

~ Traditionally, this has been done using
regression models

> Here, the authors use neural networks

1. Weather Forecast Postprocessing — Rasp & Lerch, 2018
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Data

~ Forecast data:

> THORPEX Interactive Grand Global Ensemble
(TIGGE) dataset

> Forecasts for surface stations in Germany at
lead times of 48 h

> ECMWEF 50-member ensemble forecasts
initialized at 0000 UTC every day

» Upscaled onto a 0.58 3 0.58 grid

> 2 mtemperature, plus auxiliary variables

» Observation data:
» 537 weather stations in Germany
> 2 mtemperature only

> Training: 2007 — 2015 & 2075 only
> Test: 2076

1. Weather Forecast Postprocessing — Rasp & Lerch, 2018
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F1G. 2. Locations of DWD surface observation stations. The
grayscale values of the points indicate the altitude (m).

1. Weather Forecast Postprocessing — Rasp & Lerch, 2018

TABLE 1. Abbreviations and descriptions of all features.

Feature Description

Ensemble predictions (mean and std dev)

tZm 2-m temperature
cape Convective available
potential energy

sp Surface pressure

tce Total cloud cover

sshf Sensible heat flux

slhf Latent heat flux

ulo 10-m U wind

v10 10-m V wind

d2m 2-m dewpoint temperature

SSI Shortwave radiation flux

str Longwave radiation flux

sm Soil moisture

u_pl500 U wind at 500 hPa

v_pl500 V wind at 500 hPa

u_pl850 U wind at 850 hPa

v_pl850 V wind at 850 hPa

gh_pl500 Geopotential at 500 hPa

q_pl850 Specific humidity at 850 hPa
Station-specific information

station_alt Altitude of station

orog Altitude of model grid point

station_lat Lat of station

station_lon Lon of station
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the top part of Table 1 are combined with station-specific
features in the bottom part, and aggregated into a vector
of predictors X;, € RY, p = 42. Further, we write X?,m to
denote the vector of predictors that only contains the
mean value and standard deviation of the 2-m tempera-
ture forecasts.

1. Weather Forecast Postprocessing — Rasp & Lerch, 2018

TABLE 1. Abbreviations and descriptions of all features.

Feature

Description

Ensemble predictions (mean and std dev)

t2Zm
cape

sp

tcc

sshf
slhf

ulo

v10
d2m

Ssr

str

sm
u_pl500
v_pl500
u_pl850
v_pl850
gh_pl500
q_pl850

station_alt
orog
station_lat
station_lon

2-m temperature

Convective available
potential energy

Surface pressure

Total cloud cover

Sensible heat flux

Latent heat flux

10-m U wind

10-m V wind

2-m dewpoint temperature

Shortwave radiation flux

Longwave radiation flux

Soil moisture

U wind at 500 hPa

V wind at 500 hPa

U wind at 850 hPa

V wind at 850 hPa

Geopotential at 500 hPa

Specific humidity at 850 hPa

Station-specific information

Altitude of station

Altitude of model grid point
Lat of station

Lon of station
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Model Description

Raw ensemble

Benchmark postprocessing methods

EMOS-gl Global EMOS

EMOS-loc Local EMOS

EMOS-loc-bst Local EMOS with boosting
QRF Local quantile regression forest

Neural network models

FCN Fully connected network

FCN-aux ...with auxiliary predictors

FCN-emb ...with station embeddings

FCN-aux-emb ...with both of the above

NN-aux One-hidden-layer NN with auxiliary predictors
NN-aux-emb ...and station embeddings

1. Weather Forecast Postprocessing — Rasp & Lerch, 2018
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Longitude ' Longitude

F1G. 4. Observation station locations color coded by the best performing model (in terms of mean CRPS over calendar
year 2016) for models trained on data from (left) 2015 and (right) 2007 to 2015. Point shapes indicate the type of model.

% % 1. Weather Forecast Postprocessing — Rasp & Lerch, 2018
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To summarise ...

Neural networks were used to learn the relation
between weather forecast output and
observations

Weather forecast data augmented with
additional features of weather stations were
embedded for better performance

Neural network based method outperformed all
other state-of-the-art post-processing methods

Randomisation of inputs allowed to infer the
relevance of various features for the final output
performance

1. Weather Forecast Postprocessing — Rasp & Lerch, 2018
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Predicting weather forecast uncertainty with machine learning
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Climate Model Parametrisation

> Krasnopolsky, Fox-Rabinovitz
& Belochitski, 2013

- Rasg, Pritchard & Gentine,
2048

- Yuval O'Gorman & Hill, 20271
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Hindawi Publishing Corporation
Advances in Artificial Neural Systems
Volume 2013, Article ID 485913, 13 pages
http://dx.doi.org/10.1155/2013/485913

Hindawi

Research Article

Using Ensemble of Neural Networks to Learn Stochastic
Convection Parameterizations for Climate and Numerical
Weather Prediction Models from Data Simulated by

a Cloud Resolving Model

Vladimir M. Krasnopolsky,"” Michael S. Fox-Rabinovitz,” and Alexei A. Belochitski’*

I National Centers for Environmental Prediction, NOAA, College Park, MD 20740, USA

2 Barth System Sciences Interdisciplinary Center, University of Maryland, College Park, MD 20740, USA
? Geophysical Fluid Dynamics Laboratory, NOAA, Princeton, NJ 08540, USA

* Brookhaven National Laboratory, Upton, NY 11973, USA

2. Climate Model Parametrisation — Krasnopolky, Fox-Rabinovitz & Belochitski, 2013
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Main idea ...

» General circulation models are necessarily
required to parametrise several aspects of
climate dynamics
> An important parametrisation is cloud

dynamics

» Cloud resolving models (CRMs) are typically
very high resolution and time consuming

> Here, the authors propose to learn the

parametrisation from CRM data using neural
networks

2. Climate Model Parametrisation — Krasnopolky, Fox-Rabinovitz & Belochitski, 2013
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Data and models used ...

» TOGA-COARE

>

the international observational experiment in
the tropics conducted for the 4-month period
from November 1992 to February 1993)
horizontal resolution of 1 km

64 or 96 vertical layers

time integration step of 5's

- Integrate CRM over a domain of 256 x 256 km

~ Basic plan:

>

>

Run CRM

Make “pseudo-observations” from CRM onto
the variable set and resolution of GCMs
Train neural networks with pseudo-
observations

2. Climate Model Parametrisation — Krasnopolky, Fox-Rabinovitz & Belochitski, 2013
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Neural network setup ...

> Simulation details:
> CRM run for 120 (model) days
> Qutput aggregated to hourly resolution
> Approx 2800 data points

> 80:20 split for training and test data
> 2240 data points for training
> 560 data points for test

- Final choice for number of hidden neurons (HID)

IS5

TABLE 1: NN architecture (inputs and outputs) investigated in the
paper.

NN architecture NN inputs NN outputs
In:out T Qv QIC Q2 PREC CLD
36:55 18 18 18 18 1 18

T is temperature, QV is atmospheric moisture—vapor mixing ratio, Q1C: the
“apparent heat source,” Q2: the “apparent moist sink]” PREC: precipitation
rates, and CLD: cloudiness. Numbers in the table show the dimensionality of
the corresponding input and output parameters. In : Out stand for NN inputs
and outputs and show their corresponding numbers.

TasLi 2: The number of fitting parameters (NN weights), N, at
different values of HID = k (see (3)).

HID
1 2 5 10 15 20
Ne 166 273 594 1129 1667 2199

2. Climate Model Parametrisation — Krasnopolky, Fox-Rabinovitz & Belochitski, 2013
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Vertical layers

Mean profile (K/day)

Figure 5: QIC (the apparent heat source from convection) mean
profiles on the test set produced by different NN ensemble members.
The different curves presented in the figure correspond to different
ensemble members; the thick solid line shows the verification data
in the test set.

Bedartha Goswami

J 2. Climate Model Parametrisation — Krasnopolky, Fox-Rabinovitz & Belochitski, 2013
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2. Climate Model Parametrisation — Krasnopolky, Fox-Rabinovitz & Belochitski, 2013



/xﬁf

ML-4430 Lecture 7: Neural Network Approaches

Bedartha Goswami

40 t :
30 b, &

N,
L)
Iy !

Pl R PR
I I 1 I

KT
W
¥

i o ol i,
n hi‘ll]l“u “fﬂ |‘ Jthhﬂ ’h i’ﬂ iil]lzﬂ.ll b i J AI \

0 500 1000 1500 2000 2500

::}'-
-
z-

_xﬁmﬁ

:~ ;

— CAM
-—-- NCAM ensemble
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solid) and CAM-NN (or NCAM) ensemble mean (red dashed).

2. Climate Model Parametrisation — Krasnopolky, Fox-Rabinovitz & Belochitski, 2013
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To summarise ...

> Cloud dynamics were parametrised using neural
networks

> The neural network was trained to learn the
relation between CRM and GCM

» Proof-of-concept study demonstrated with the
TOGA-COARE CRM and the CAM models

» Results between the neural network
parametrisations and the standard
parametrisations were comparable

2. Climate Model Parametrisation — Krasnopolky, Fox-Rabinovitz & Belochitski, 2013
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Deep learning to represent subgrid processes in
climate models

Stephan Rasp®', Michael S. Pritchard®, and Pierre Gentine“®

aMeteorological Institute, Ludwig-Maximilian-University, 80333 Munich, Germany; "Department of Earth System Science, University of California, Irvine,
CA 92697; “Department of Earth and Environmental Engineering, Earth Institute, Columbia University, New York, NY 10027; and 9Data Science Institute,
Columbia University, New York, NY 10027

Edited by Isaac M. Held, Geophysical Fluid Dynamics Laboratory, National Oceanic and Atmospheric Administration, Princeton, NJ, and approved August 8,

2018 (received for review June 14, 2018)

The representation of nonlinear subgrid processes, especially extremes. Further increasing the resolution to a few hundred
I . . E_— _r EE - . B L B SRR I i~ - [ B

o N . Pl B a4 BRIV S . NI R

2. Climate Model Parametrisation — Rasp, Pritchard & Gentine, 2018
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Geophysical Research Letters

RESEARCH LETTER
10.1029/2020GL091363

Key Points:

« Neural-network parameterization
gives stable simulations that
replicate climate of idealized
simulation of atmosphere at high
resolution

« Separate predictions of the effect of
each subgrid process allows physical
constraints to be incorporated into
the parameterization

= Parameterization with reduced
numerical precision can decrease
computational demands without
affecting the simulated climate

Use of Neural Networks for Stable, Accurate and
Physically Consistent Parameterization of Subgrid
Atmospheric Processes With Good Performance at
Reduced Precision

Janni Yuval' @, Paul A. O'Gorman’ (2, and Chris N. Hill'

chpartmcnt of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA,
USA

Abstract A promising approach to improve climate-model simulations is to replace traditional
subgrid parameterizations based on simplified physical models by machine learning algorithms that are
data-driven. However, neural networks (NNs) often lead to instabilities and climate drift when coupled

2. Climate Model Parametrisation — Yuval, O’'Gorman & Hill, 2021
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Geophysical Research Letters

RESEARCH LETTER Toward Data-Driven Weather and Climate Forecasting:
10-1029/2018GL0O80704 Approximating a Simple General Circulation Model
Key Points: With Deep Learning

+ A neural network can emulate
the dynamics of a simple general

circulation model S. Scher!
+ The trained network can successfully
forecast the model weather ' Department of Meteorology and Bolin Centre for Climate Research, Stockholm University, Stockholm, Sweden

» The netwaork can produce a realistic

representation of the model climate

3. Data-driven Climate Modelling — Scher, 2018
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Main idea ...

~ Proof-of-concept that neural networks can
emulate the dynamics of a general circulation
model

- Simplified model (PUMA) with coarse resolution

~ no seasonal cycle (eternal Northern
Hemispheric winter)

> No orography,

> horizontal resolution of T21(~625 km, 32 x
64 grid points when projected on a regular
latlon grid)

> 10 vertical levels

> no diurnal cycle

> No ocean

> time step of 45 min

3. Data-driven Climate Modelling — Scher, 2018
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Figure 1. Two model states of the PUMA model, separated by 5 days (from left to right). The upper row shows geopotential at 500 hPa (zg), and the lower row
shows zonal wind at 300 hPa (ua).

3. Data-driven Climate Modelling — Scher, 2018
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Model setup ...

> First 30 years of model run are discarded as
Spin-up years

> 150 years of data are used
> 100 years for training
> 20 years for validation
> 30 years for testing

> Autoencoder network architecture
> Combined with 2D convolutions and max
pooling

» High dimensional input and outputs
> 40 channels x 2, 048 grid points = 81, 920

3. Data-driven Climate Modelling — Scher, 2018
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network 500hPa height 30day variance

75 1

. M--

25

—25 1

_SU g

latitude [degrees north]
=

—T75 1

0 50 100 150 200 250 300 350
longitude [degrees east]

3. Data-driven Climate Modelling — Scher, 2018

0.002000

0.001667

0.001333

0.001000

0.000667

0.000333

0.000000

latitude [degrees north]

gcm 500hPa height 30day variance

50

251

‘}_

25+

=50 1

—75 -

a

50 100 150 200 250 300 350
longitude [degrees esast]

0.002000
G.001667
0.001333
G.001000
0000667
0.000333

Q000000

32



ML-4430 Lecture 7: Neural Network Approaches

Bedartha Goswami

z 500hPa

80 1.90
60 1.52
40 1.14
20 0.76
0.38
-0.38
-20 -0.76
—40 -1.14
—-60 -152
—80 -1.90
0 50 100 150 200 250 300 350

z 500hPa network

80 1.90
60 1.52
40 1.14
20 0.76
0.38
-0.38
= -0.76
—40 ~1.14
-60 -1.52
—80 -1.90

0 50 100 150 200 250 300 350
longitude

latitude
o

latitude
o

3. Data-driven Climate Modelling — Scher, 2018

day 46

latitude

latitude

u 300hPa

80
60 A
40

20 1

-20
-40 |
_60 4

_80 4

50 100 150 200 250 300
u 300hPa network

|
8]
=]

—40 4

_60 4

-804

50 100 150 200 250 300

longitude

350

1.90
1.52
1.14
0.76
0.38
—-0.38
-0.76
-1.14
-1.52
-1.90

1.90
1.52
1.14
0.76
0.38
—-0.38
-0.76
-1.14
-1.52
-1.90

33


grl58271-s4.mp4

ML-4430 Lecture 7: Neural Network Approaches

Bedartha Goswami

To summarise ...

~ A neural network was trained on the output of a
simple atmospeheric climate model

> The goal was to learn to emulate the dynamical
behaviour of the atmosphere as modeled in the
climate model

> The neural network learns the dynamics
successfully

> The results from the neural network are slightly
noisy but overall are convincing

3. Data-driven Climate Modelling — Scher, 2018

34



ML-4430 Lecture 7: Neural Network Approaches

Bedartha Goswami

Journal of Advances in
jAMES Modeling Earth Systems

RESEARCH ARTICLE
10.1029/2020MS002331

Key Points:

«  We test four different methods to
transform a deterministic neural
network weather forecasting system
into an ensemble forecasting system

« The ensemble mean of all methods
is more skilful than a deterministic
neural network forecast

« The spread-error correlation of the
four methods is comparable to that
of numerical weather prediction
(N'WP) forecasts

mi)

Ensemble Methods for Neural Network-Based Weather
Forecasts
Sebastian Scher! ©© and Gabriele Messoril*?

1Dcpartmcnt of Meteorology and Bolin Centre for Climate Research, Stockholm University, Stockholm, Sweden,
*Department of Earth Sciences and Centre of Natural Hazards and Disaster Science (CNDS), Uppsala University,
Uppsala, Sweden

Abstract Ensemble weather forecasts enable a measure of uncertainty to be attached to each
forecast, by computing the ensemble’s spread. However, generating an ensemble with a good spread-error
relationship is far from trivial, and a wide range of approaches to achieve this have been explored—

3. Data-driven Climate Modelling —» Scher & Messori, 2018
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Journal of Advances in
jAMES Modeling Earth Systems

RESEARCH ARTICLE
10.1029/2020MS002405

Key Points:

« A large convolutional neural
network is trained for the
WeatherBench challenge

+ Pretraining on climate model
data improves skill and prevents
overfitting

+ The model sets a new state-of-the-
art for data-driven medium-range
forecasting

ok

Data-Driven Medium-Range Weather Prediction With a
Resnet Pretrained on Climate Simulations: A New Model
for WeatherBench

Stephan Rasp"? (2 and Nils Thuerey"

"Department of Informatics, Technical University of Munich, Munich, Germany, “Now at ClimateAi, San Francisco,
USA

Abstract Numerical weather prediction has traditionally been based on the models that discretize

the duvnamiral and nhucical annatinne nf tha atmaenhare Roarantly howewvar the ries nf dean learning

3. Data-driven Climate Modelling —» Rasp & Thuerey, 2021
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LETTER

https://doi.org/10.1038/s41586-019-1559-7

Deep learning for multi-year ENSO forecasts

Yoo-Geun Ham'*, Jeong-Hwan Kim' & Jing-Jia Luo*?

4. ENSO Forecasting - Ham, Kim & Luo, 2019
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Main idea ...

> Use CNNs to predict ENSO index values up to
one and half years in advance

- Overcome limited amount of observartions (in
terms of El Niflos and La Nifias) by
> Training the CNN
> On historical simulations
> On reanalysis between 1871-1973

> Implicitly assumed
- Statistical emulators can help predict ENSO
behaiviour better than dynamical models
> All dynamics are not knowable

4. ENSO Forecasting - Ham, Kim & Luo, 2019
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Correlation skill
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4. ENSO Forecasting - Ham, Kim & Luo, 2019
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4. ENSO Forecasting - Ham, Kim & Luo, 2019
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To summarise ...

A\

CNNs were used to forecast ENSO index values
> Input data were sea surface temperatures
and oceanic heat content

> CNNs were trained on both climate model
output and reanalysis data

> The neural network approach method
outpferformed all other methods

> Forecast skill was above 0.5 till around 16
months

» Heatmap analysis revealed extratropical souther

Pacific and Indian oceans as important
predictors of ENSO

4. ENSO Forecasting - Ham, Kim & Luo, 2019
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Forecasting El Nino with Convolutional and
Recurrent Neural Networks

Ankur Mahesh® Maximilian Evans Garima Jain Mattias Castillo Aranildo Lima

ClimateAi ClimateAi ClimateAi ClimateAi ClimateAi
Brent Lunghino Himanshu Gupta Carlos Gaitan Jarrett K. Hunt
ClimateAi ClimateAi ClimateAi ClimateAi

Omeed Tavasoli Patrick T. Brown V. Balaji
ClimateAi ClimateAi Geophysical Fluid
San Jose State University Dynamics Laboratory

4. ENSO Forecasting —» Mahesh et al., 2019
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The World as a Graph:
Improving El Nino Forecasts with Graph Neural Networks

Salva Riihling Cachay!, Emma Erickson*?,
Arthur Fender C. Bucker*® 4, Ernest Pokropek*s, Willa Potosnak*®,
Suyash Bire®, Salomey Osei’, and Bjorn Liitjens®

I'Technical University of Darmstadt, >University of Illinois at Urbana-Champaign,
3University of Sdo Paulo, # Technical University of Munich, >Warsaw University of Technology,
5Duquesne University, ’ African Institute for Mathematical Sciences, Massachusetts Institute of Technology

4. ENSO Forecasting — Cachay et al., 2021
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Weather Forecast Postprocessing
n > Rasp & Lerch, 2018

»

*)

Data-Driven Climate Modeling
B > Scher, 2018

- Rasp-sthgerey 2027

% Outline

Climate Model Parametrisation

> Krasnopolsky, Fox-Rabinovitz
B & Belochitski, 2013

ENSO Forecasting

> Ham, Kim & Luo, 2019
- Maheshelal 2070
- Cachayetal202%
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