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Model mortality rates in WE using cold / warm extremes

Predict spatial pattern of WE surface temperatures using CNNs

Predict spatial pattern of WE surface temperatures using CNNs

Predict WE surface temperatures using LSTMs

Model rainfall over WE as a correlate of Morth Atlantic Oscillation (NAQ)
Predict WE rainfall using LSTMs

Model economic indicators of WE countries using climatic observables
Predict spatial pattern of average wind speeds using CNNs

Predict spatial pattern of WE rainfall using CNNs

Predict WE rainfall using LSTMs

Model temperatures in WE as a correlate of the Arctic Oscillation (AQ)
Predict WE rainfall using Gaussian processes

Estimate regions of similar behaviour for average wind speeds over WE using climate nel Estimate regions of similar behaviour for WE rainfall using climate network communities
Estimate regions of similar behaviour for WE rainfall using climate network communities Estimate regions of similar behaviour for WE surface temperatures with climate network communities

Other (i.e. your own idea, which you can inform me via email / Discord)
Predict spatial pattern of WE rainfall using CNNs

Model mortality rates in WE using cold / warm extremes

Estimate latent factors underlying WE surface temperatures using EOFs
Predict spatial pattern of WE rainfall using CNNs

Model surface temperature over WE as a correlate of atmospheric CO2 levels

Estimate regions of similar behaviour for WE rainfall using climate network communities
Predict spatial pattern of WE surface temperatures using CNNs

Predict spatial pattern of WE surface temperatures using CNNs

Estimate latent factors underlying WE rainfall using VAEs

Estimate latent factors underlying WE surface temperatures using VAEs

Estimate latent factors underlying WE surface temperatures using VAEs
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Empirical Orthogonal Functions

> What are EOFs?

> Considerations in estimating
EOFs

> Examples
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EOF <=>PCA

> Consider the data matrix
X=(X, X, o, X)),
where p is the number of locations and
X = (X, Xy o X )T
J J 4 nj

is the time series of length n at location j

» Esimate the covariance matrix of size p x p
C=X"X

> Empirical orthogonal functions are the
eigenvectors of C = allowing a change of basis

- It identifies the dominant directions of variability
in the data

1. Empirical Orthogonal Functions —» What are EOFs?
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EOF <=> PCA

> Projecting the data onto each eigen direction reveals the
different dominant “modes” of variability

~ For a single time instant,
1T = - T
yho=X e =K, X, ..x]le.e,..e]l
> That is, for the entire time series

y'=Xe,

gives the EOF time series for the first eigen direction

1. Empirical Orthogonal Functions —» What are EOFs?
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Considerations in estimating EOFs

» Truncation:
» Use only k << p leading eigenvalues

1. Empirical Orthogonal Functions — Considerations in estimating EOFs
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1. Empirical Orthogonal Functions — Considerations in estimating EOFs
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Considerations while estimating EOFs

» Truncation:
» Use only k << p leading eigenvalues

- Rotation:
> Obtain 'simple’ structures
> Minimally overlapping EOFs
> Ease of interpretation

1. Empirical Orthogonal Functions — Considerations in estimating EOFs
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b) 33.29%,1.00
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i) 22.85%,1.00
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1. Empirical Orthogonal Functions — Considerations in estimating EOFs

Lian & Chen, J. Clim, 2012
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Considerations while estimating EOFs

~ Truncation:
» Use only k << p leading eigenvalues

- Rotation:
> Obtain 'simple’ structures
> Minimally overlapping EOFs
> Ease of interpretation

> Uncertainty

> North's rule of thumb (North et al., 1982)
> Monte Carlo sampling

1. Empirical Orthogonal Functions — Considerations in estimating EOFs

10



ML-4430 Lecture 6: Non-neural network approaches

Bedartha Goswami

Hannachi, Jolliffe & Stephenson, Int. J. Clim., 2007

Eigenvalue spectrum
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Spectrum, in percentage, of the covariance matrix of wintermonthly (DJF) SLP
as per North's rule of thumb

1. Empirical Orthogonal Functions — Considerations in estimating EOFs
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Considerations while estimating EOFs

~ Truncation:
» Use only k << p leading eigenvalues

A\

Rotation:

> Obtain 'simple’ structures

> Minimally overlapping EOFs
> Ease of interpretation

\4

Uncertainty
> North's rule of thumb (North et al., 1982)
> Monte Carlo sampling

\4

Spatial effects
- For a rectangular grid, scale (co)variances by latitudes
> Buell Patterns

1. Empirical Orthogonal Functions — Considerations in estimating EOFs

12
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X Spatial Loadings (EOF1)

X Spatial Loadings (EOF2)
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1. Empirical Orthogonal Functions — Considerations in estimating EOFs 13
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Considerations while estimating EOFs

~ Truncation:
» Use only k << p leading eigenvalues

A\

Rotation:

> Obtain 'simple’ structures

> Minimally overlapping EOFs
> Ease of interpretation

\4

Uncertainty
> North's rule of thumb (North et al., 1982)
> Monte Carlo sampling

\4

Spatial effects
- For a rectangular grid, scale (co)variances by latitudes
> Buell Patterns

1. Empirical Orthogonal Functions — Considerations in estimating EOFs
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1. Empirical Orthogonal Functions — Examples: Pacific decadal oscillation
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Deser et al., Ann. Rev. Marine Sci., 2010
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https.//www.cpc.ncep.noaa.gov/products/precip/CWlink/daily_ao_index/ao.loading.shtm/

Leading EQF (19%) shown as
regression map of 1000mb height {m)
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1. Empirical Orthogonal Functions —» Examples: Pacific decadal oscillation
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1. Empirical Orthogonal Functions —» Examples: ENSO

Takahashi et al,, Geophys. Res. Lett, 2011

Linear regression coefficients between
SST data and the first two principal
components of the SST data

Linear regression coefficients between
SST data and Eastern Pacific Nino Index

Linear regression coefficients between
SST data and Central PacificNino Index
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“

% Outline

Cluster Analysis

> What is cluster analysis?
> Hierarchical clustering

> Non-hierarchical clustering

18
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Clustering ...

~ Once again, consider the data matrix
X=(X, X, o, X)),
where p is the number of locations and
— T
X = (XU, Xpp oo an)

is the time series of length n at location j

~ The goal of cluster analysis is to group the
locations p into k groups on the basis of
statistical notions of similarity between the
locations

> For this we typically need a distance metric to

quantify how similar (or ‘close’) two time series
X;and x; are

2. Cluster Analysis - What is cluster analysis?

19
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Clustering ...

> We can choose different forms of distance
metrics between two time series

> Eulidean metric
dij: [Zk<Xik_Xjk) 2112
> Cosine metric
d, = arccos ( corr (x, X)) )
> Once you have a distance metric, you can

choose between hierarchical and non-
hierarchical methods

2. Cluster Analysis - What is cluster analysis?

20
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Hierarchical clustering ...

- Start with p clusters (as many clusters as
locations)
> each containing only one member, i.e, the
location itself

> Merge the two clusters closest to each other
> Now you have p — 1 clusters

> Next, merge the next two closest clusters
> Now you have p — 2 clusters

- Keep merging until you have only one (trivial)
cluster, which contains all nodes

2. Cluster Analysis — Hierarchical clustering

21
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Agglomerative clustering (based on distance between clusters)
- Single (or minimum) linkage

d(C, C,)) =mind, foralliinC,,jinC,
> Complete (or maximum) linkage

d(C,, C,) = max d, foralliinC,,jinC,
~ Average linkage

d(C,, C)=1/(nn,) Z,2,d, foralliinC,,jin C,
> Centroid linkage

d(C,. C) =11, =3,
where x9, and x9, are the centroids of groups 1 and 2

2. Cluster Analysis — Hierarchical clustering

22
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Ward’s method (based on minimum variance)

>

Does not need a distance metric
Start with p clusters, and keep merging until you have one cluster

Merge so that the sum of squared distances of each point with
respect to the centroid of its cluster is minimised

Thus, at each step, find the merge that minimises
W=3, 55,1, %117

where t is the time index, i is the index for time series in each group,
and c is the index that goes over the number of clusters

2. Cluster Analysis — Hierarchical clustering

23



Dendrogram

> Visual representation of the merges

» Also shows the distance beteen clusters o
> Can be helpful to decide an appropriate
number of clusters g
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Station code
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2. Cluster Analysis — Hierarchical clustering

-0.5-0.4-0.3-0.2-0.1 0.0 0.1 0.2 03 04 0.5
I Spearman correlation coefficient, o



Rheinwalt et a., Machine Learning and Data Mining Approaches to Climate Science (2075)

Monthly mean precipitation clusters
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Monthly mean data, ar-coss distance metric based on Spearman’s correlation, complete linkage clustering

2. Cluster Analysis — Hierarchical clustering 25
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K-means clustering
-~ Pre-specify that we need K clusters

- Start with a rangom grouping of nodes into
K clusters

- Iterate over nodes
» At node x, compute the distance from

that node to the centroids and find the
cluster which is closest
- If x, belongs to that cluster already, move

to the next node
- Else, assign x to the closest cluster and

move to next node
- Keep iterating until a full rotation over all
nodes results in zero reassignments

2. Cluster Analysis = Non-Hierarchical clustering

26
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Map of k-means clustering withk=12 for the variables P, T, SW, EVI, FAPAR

2. Cluster Analysis = Non-Hierarchical clustering

Zscheischler, Mahecha & Harmeling, Procedia Computer Sci., 2012
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Gaussian mixture model

~ Model the data as belonging to a Gaussian
mixture composed of K individual Gaussian
distributions

~ Use a Bayesian approach to determine the
liklihood that a data point belongs to a
particular component of the mixture

- Use the expectation minimization (EM)
algorithm to find the best fit

» Result: Posterior probabilities denoting
membership of each data point to each
group (fuzzy clustering)

> K has to be pre-specified

2. Cluster Analysis = Non-Hierarchical clustering

28
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Latitude
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Chen et al., Technometrics, 2013

1995-2004 Winter Cluster
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4 clusters of extreme precipitation type, colored according to frequency of extreme events in winter, between 1995 - 2004

2. Cluster Analysis = Non-Hierarchical clustering

29
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Empirical Orthogonal Functions

> What are EOFs?

> Considerations in estimating
EOFs

> Examples
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“

% Outline

Cluster Analysis

> What is cluster analysis?
> Hierarchical clustering

> Non-hierarchical clustering
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