How to write a scientific paper

Bedartha Goswami

7 July 2021
Section 1

Structure & components
Overview

- Title
Overview

- Title
- Abstract
Overview

- Title
- Abstract
- Main text (introduction, methods, results, ...)

Bedartha Goswami
How to write a scientific paper
Overview

- Title
- Abstract
- Main text (introduction, methods, results, ...)
- Figures
Overview

- Title
- Abstract
- Main text (introduction, methods, results, ...)
- Figures
- Data and code availability
Overview

- Title
- Abstract
- Main text (introduction, methods, results, ...)
- Figures
- Data and code availability
- Acknowledgments
Overview

- Title
- Abstract
- Main text (introduction, methods, results, ...)
- Figures
- Data and code availability
- Acknowledgments
- Conflicts of interest
Overview

- Title
- Abstract
- Main text (introduction, methods, results, ...)
- Figures
- Data and code availability
- Acknowledgments
- Conflicts of interest
- References
Overview

- Title
- Abstract
- Main text (introduction, methods, results, ...)
- Figures
- Data and code availability
- Acknowledgments
- Conflicts of interest
- References
- Supplementary
Short (max 15 words)
Title

- Short (max 15 words)
- Informative
• Short (max 15 words)
• Informative
• Preferably no verbs, but only simple present tense if at all
- Short (max 15 words)
- Informative
- Preferably no verbs, but only simple present tense if at all
- Avoid abbreviations
Title

- Short (max 15 words)
- Informative
- Preferably no verbs, but only simple present tense if at all
- Avoid abbreviations
- Avoid jokes (search engines might not get it)
Abstract

- Summarise the paper briefly
Abstract

- Summarise the paper briefly
- For a more general audience
Abstract

- Summarise the paper briefly
- For a more general audience
- Structure:
Abstract

- Summarise the paper briefly
- For a more general audience
- Structure:
 - 1-2 sentences provide background and motivation / rationale
Abstract

- Summarise the paper briefly
- For a more general audience
- Structure:
 - 1-2 sentences provide background and motivation / rationale
 - 1-2 sentences describing what you do, e.g. “Here, we consider . . . ”
Abstract

- Summarise the paper briefly
- For a more general audience
- Structure:
 - 1-2 sentences provide background and motivation / rationale
 - 1-2 sentences describing what you do, e.g. “Here, we consider . . . ”
 - 1-2 sentences describing what you find, e.g., “We find that . . . ”, “Our results indicate that . . . ”
Abstract

- Summarise the paper briefly
- For a more general audience
- Structure:
 - 1-2 sentences provide background and motivation / rationale
 - 1-2 sentences describing what you do, e.g. “Here, we consider . . . ”
 - 1-2 sentences describing what you find, e.g., “We find that . . . ”, “Our results indicate that . . . ”
 - 1-2 sentences putting the results in context
Abstract

- Summarise the paper briefly
- For a more general audience
- Structure:
 - 1-2 sentences provide background and motivation / rationale
 - 1-2 sentences describing what you do, e.g. “Here, we consider . . .”
 - 1-2 sentences describing what you find, e.g., “We find that . . .”, “Our results indicate that . . .”
 - 1-2 sentences putting the results in context
- https://www.nature.com/documents/nature-summary-paragraph.pdf
Introduction
Main text

- Introduction
 - Background
Main text

- Introduction
 - Background
 - Rationale
Introduction
- Background
- Rationale
- Related work
Main text

- Introduction
 - Background
 - Rationale
 - Related work
 - Contribution
| Methods |
Main text

- Methods
 - Data used
Main text

- Methods
 - Data used
 - Methods used
Methods
- Data used
- Methods used
- Setup of experiments
Results and discussion
Results and discussion
- Main figures of the paper
Results and discussion
 - Main figures of the paper
 - Tables
Main text

- Results and discussion
 - Main figures of the paper
 - Tables
 - Brief (non-judgemental) interpretation of the figures
Conclusion
Conclusion
- Summarise the main points

Conclusion

- Summarise the main points
- Repeat what you did / set out to do
Conclusion
- Summarise the main points
- Repeat what you did / set out to do
- Repeat what you achieved
Conclusion

- Summarise the main points
- Repeat what you did / set out to do
- Repeat what you achieved
- Provide a brief context of how your results will impact the field
Use a plotting software that generates vector graphics (SVG, PDF)
Use a plotting software that generates vector graphics (SVG, PDF)
Avoid PNGs and JPEGs as far as possible
Figures

- Use a plotting software that generates vector graphics (SVG, PDF)
- Avoid PNGs and JPEGs as far as possible
- Ensure the smallest font size in the figure is no less than 11 pts
- Use a plotting software that generates vector graphics (SVG, PDF)
- Avoid PNGs and JPEGs as far as possible
- Ensure the smallest font size in the figure is no less than 11 pts
- Find out how big should the figure be (in/mm) and design accordingly
- Use colorblind friendly color-schemes
Use colorblind friendly color-schemes
 - Use a color blindness simulator
Figures

- Use colorblind friendly color-schemes
 - Use a color blindness simulator
 - https://colororacle.org/
Use color maps appropriately.

https://matplotlib.org/2.0.2/examples/color/colormaps_reference.html
Use color maps appropriately

- sequential color maps for data which are all non-negative or all non-positive (e.g., precipitation)

https://matplotlib.org/2.0.2/examples/color/colormaps_reference.html
Use color maps appropriately

- sequential color maps for data which are all non-negative or all non-positive (e.g., precipitation)
- divergent color maps for data which have both positive and negative values with the zero in between (e.g., precipitation anomalies)
Use color maps appropriately

- sequential color maps for data which are all non-negative or all non-positive (e.g., precipitation)
- divergent color maps for data which have both positive and negative values with the zero in between (e.g., precipitation anomalies)
- https://matplotlib.org/2.0.2/examples/color/colormaps_reference.html
Use line plots and bar plots appropriately
Use line plots and bar plots appropriately

- line plots for continuous data, i.e., if it is meaningful to think of data in between two plotted data points, then a line plot is okay, e.g., hourly or daily temperature
- bar plots for discontinuous data, e.g., monthly averages or sums, categorical data (e.g., country-wise averages or sums)

Always provide axis labels (even for the color bars)
Use line plots and bar plots appropriately
- line plots for continuous data, i.e., if it is meaningful to think of data in between two plotted data points, then a line plot is okay, e.g., hourly or daily temperature
- bar plots for discontinuous data, e.g., monthly averages or sums, categorical data (e.g., country-wise averages or sums)
Use line plots and bar plots appropriately

- line plots for continuous data, i.e., if it is meaningful to think of data in between two plotted data points, then a line plot is okay, e.g., hourly or daily temperature
- bar plots for discontinuous data, e.g., monthly averages or sums, categorical data (e.g., country-wise averages or sums)

Always provide axis labels (even for the color bars)
Figures

- Use legends appropriately
Use legends appropriately.

Figure legends (color keys, etc) should be such that the figure is understandable without reading the caption.
Use legends appropriately
Figure legends (color keys, etc) should be such that the figure is understandable without reading the caption
If you have space, then use the figure captions to quickly the results in the context of the article’s narrative, e.g.
Use legends appropriately
Figure legends (color keys, etc) should be such that the figure is understandable without reading the caption
If you have space, then use the figure captions to quickly the results in the context of the article’s narrative, e.g.
- "(A) shows the Niño 3.4 SST anomalies where the El Niños and La Niñas are clearly visible as large excursions from the normal SST climatology (the zero line)"
Use legends appropriately

Figure legends (color keys, etc) should be such that the figure is understandable without reading the caption

If you have space, then use the figure captions to quickly the results in the context of the article’s narrative, e.g.

“(A) shows the Niño 3.4 SST anomalies where the El Niños and La Niñas are clearly visible as large excursions from the normal SST climatology (the zero line)”, as opposed to

“(A) shows the SSTA anomalies in the Niño 3.4 region”.

Bedartha Goswami
How to write a scientific paper
Data and code availability

- Important for reproducibility of research
Data and code availability

- Important for reproducibility of research
- Mention data sources
Data and code availability

- Important for reproducibility of research
- Mention data sources
- Provide code sources (Github repo, etc.)
Acknowledgments

- Mention funding sources
Acknowledgments

- Mention funding sources
- Sometimes people with whom you had informal but helpful discussions about the paper
Conflicts of interest

- E.g., if you are working for Shell and writing about climate change
Use a reference manager
- Use a reference manager
- Make sure you cite classical papers as well
Use a reference manager
Make sure you cite classical papers as well
Make sure you cite the most recent papers as well
Use a reference manager
Make sure you cite classical papers as well
Make sure you cite the most recent papers as well
Don’t use “filler” references
References

- Use a reference manager
- Make sure you cite classical papers as well
- Make sure you cite the most recent papers as well
- Don’t use “filler” references
- Keep to a minimum (length != intelligence)
Supplementary material and appendices

- Typically not essential to the main narrative but helpful
Supplementary material and appendices

- Typically not essential to the main narrative but helpful
- Results from additional experimental setups
Supplementary material and appendices

- Typically not essential to the main narrative but helpful
- Results from additional experimental setups
- Sensitivity / cross-validation / robustness checks
Supplementary material and appendices

- Typically not essential to the main narrative but helpful
- Results from additional experimental setups
- Sensitivity / cross-validation / robustness checks
- More background about the data and methods
Supplementary material and appendices

- Typically not essential to the main narrative but helpful
- Results from additional experimental setups
- Sensitivity / cross-validation / robustness checks
- More background about the data and methods
- Details about algorithmic and implementation aspects of your ideas
Section 2

Language and style
Overview

- Why is language important
Overview

- Why is language important
- Tenses
Overview

- Why is language important
- Tenses
- Grammar
Overview

- Why is language important
- Tenses
- Grammar
- Sentences
Overview

- Why is language important
- Tenses
- Grammar
- Sentences
- Paragraphs
Overview

- Why is language important
- Tenses
- Grammar
- Sentences
- Paragraphs
- Common errors
Overview

- Why is language important
- Tenses
- Grammar
- Sentences
- Paragraphs
- Common errors
- Source:
Poor language can delay or even block publication
Why is language important

- Poor language can delay or even block publication
 - Reviewers need to understand your message with minimal effort
Why is language important

- Poor language can delay or even block publication
 - Reviewers need to understand your message with minimal effort
 - Reviewers need to understand your idea to be able to judge them
Why is language important

- Poor language can delay or even block publication
 - Reviewers need to understand your message with minimal effort
 - Reviewers need to understand your idea to be able to judge them
- Reviewing process does not involve language corrections
Why is language important

- Poor language can delay or even block publication
 - Reviewers need to understand your message with minimal effort
 - Reviewers need to understand your idea to be able to judge them
- Reviewing process does not involve language corrections
 - Authors’ responsibility to convey ideas
Why is language important

- Poor language can delay or even block publication
 - Reviewers need to understand your message with minimal effort
 - Reviewers need to understand your idea to be able to judge them
- Reviewing process does not involve language corrections
 - Authors’ responsibility to convey ideas
 - Not the reviewer’s responsibility to read and re-read your draft
- Preferable using present tense:
Tenses

- Preferable using present tense:
 - Don’t: “We had taken SST data from ERA5”
Preferable using present tense:

- **Don’t**: “We had taken SST data from ERA5”
- **Do**: “We take SST data from ERA5”
Preferable using present tense:

- **Don’t**: “We had taken SST data from ERA5”
- **Do**: “We take SST data from ERA5”

If you have to use past tense, restrict it to describing experimental conditions:
Preferable using present tense:

- Don’t: “We had taken SST data from ERA5”
- Do: “We take SST data from ERA5”

If you have to use past tense, restrict it to describing experimental conditions:

- “The simulations were run on a computing cluster with 120 nodes”
Preferable using present tense:

- **Don’t**: “We had taken SST data from ERA5”
- **Do**: “We take SST data from ERA5”

If you have to use past tense, restrict it to describing experimental conditions:

- “The simulations were run on a computing cluster with 120 nodes”
- “The proposed method was applied to all three data sets”
Preferable using present tense:
- Don’t: “We had taken SST data from ERA5”
- Do: “We take SST data from ERA5”

If you have to use past tense, restrict it to describing experimental conditions:
- “The simulations were run on a computing cluster with 120 nodes”
- “The proposed method was applied to all three data sets”

Avoid shifting tenses in a basic unit of text: paragraph / section
Grammar

- Prefer active voice
Grammar

- Prefer active voice
 - Don’t: “It was found that . . .”
• Prefer active voice
 • Don’t: “It was found that . . .”
 • Do: “We find that . . .”
Avoid the following:
Grammar

- Avoid the following:
 - **Contractions**: Use “do not” instead of “don’t”, “is not” instead of “isn’t”, ...
Avoid the following:

- **Contractions**: Use “do not” instead of “don’t”, “is not” instead of “isn’t”, ...
- **Abbreviations**: Except common abbreviations, any new abbreviations (if absolutely necessary) should be defined on first usage.
Eliminate redundant phrases
• Eliminate redundant phrases
 • due to the fact that -> because or since
Eliminate redundant phrases
- due to the fact that -> because or since
- immediately apparent -> apparent
Eliminate redundant phrases
- due to the fact that -> because or since
- immediately apparent -> apparent
- in the case that -> in case
Grammar

- Eliminate redundant phrases
 - due to the fact that -> because or since
 - immediately apparent -> apparent
 - in the case that -> in case
 - and also -> and
Grammar

- Eliminate redundant phrases
 - due to the fact that -> because or since
 - immediately apparent -> apparent
 - in the case that -> in case
 - and also -> and
 - in order to determine -> to determine
Short, sharp sentences
Sentences

- Short, sharp sentences
 - Avoid long, compound statements
Sentences

- Short, sharp sentences
 - Avoid long, compound statements
- One idea per sentence
Sentences

- Short, sharp sentences
 - Avoid long, compound statements
- One idea per sentence
 - avoid multiple statements in one sentence
Sentences

- Short, sharp sentences
 - Avoid long, compound statements
- One idea per sentence
 - Avoid multiple statements in one sentence
- Keep subject and verb close together

An El Niño event, which is defined as an anomalous positive excursion of a three-month running mean SST anomaly over the equatorial Pacific, typically causes a failure of the Indian monsoon in the following year.
Sentences

- Short, sharp sentences
 - Avoid long, compound statements
- One idea per sentence
 - avoid multiple statements in one sentence
- Keep subject and verb close together
 - “An El Niño event, which is defined as an anomalous positive excursion of a three month running mean SST anomaly over the equatorial Pacific, typically causes a failure of the Indian monsoon in the following year.”
Basic unit of conveying a complex idea
Paragraphs

- Basic unit of conveying a complex idea
- Prefer to have one idea / topic per paragraph
Paragraphs

- Basic unit of conveying a complex idea
- Prefer to have one idea / topic per paragraph
- Maintain the same tense all throughout
Paragraphs

- Basic unit of conveying a complex idea
- Prefer to have one idea / topic per paragraph
- Maintain the same tense all throughout
- Arrange paragraphs logically to create the ‘flow’ of your text
Avoid using “This” without qualifying it first
Avoid using “This” without qualifying it first

Don’t: “We found this to be the most important facet of the ocean’s dynamical response.”
Avoid using “This” without qualifying it first

- **Don’t**: “We found this to be the most important facet of the ocean’s dynamical response.”
- **Do**: “We found this feature of the thermocline to be the most important facet of the ocean’s dynamical response”
Avoid too many successive prepositional phrases
Common errors

- Avoid too many successive prepositional phrases
 - **Don’t**: “We ran a model simulation of the ocean for research into the evolution of the thermocline”
Avoid too many successive prepositional phrases

- **Don’t**: “We ran a model simulation of the ocean for research into the evolution of the thermocline”
- **Do**: “We ran an ocean model simulation to conduct research into thermocline evolution”
Avoid subjective words / phrases that will get outdated over time
Avoid subjective words / phrases that will get outdated over time
 “high resolution”
Avoid subjective words / phrases that will get outdated over time
- “high resolution”
- “new result”
Avoid subjective words / phrases that will get outdated over time
- “high resolution”
- “new result”
- “latest finding”
Common errors

- Avoid subjective or judgemental adjectives
Common errors

- Avoid subjective or judgemental adjectives
 - “simple model”
Common errors

- Avoid subjective or judgemental adjectives
 - “simple model”
 - “crucial result”
Avoid subjective or judgemental adjectives

- “simple model”
- “crucial result”
- “fundamental approach”
Section 3

The process of writing
Overview

- What are you writing? Who are you writing for?
What are you writing? Who are you writing for?
Find a narrative
What are you writing? Who are you writing for?
Find a narrative
Writing
Overview

- What are you writing? Who are you writing for?
- Find a narrative
- Writing
- Editing and review
What are you writing? Who are you writing for?

- Know your demographic
What are you writing? Who are you writing for?

- Know your demographic
 - general / technical audience
What are you writing? Who are you writing for?

- Know your demographic
 - general / technical audience
- Research article or review or tutorial
What are you writing? Who are you writing for?

- Know your demographic
 - general / technical audience
- Research article or review or tutorial
- Graphical abstract or schematic explaining workflow / core concepts
My workflow:
Find a narrative

- My workflow:
 - First prepare the main result figures
Find a narrative

- My workflow:
 - First prepare the main result figures
 - Core narrative is, at this stage, simply figure description
Find a narrative

- My workflow:
 - First prepare the main result figures
 - Core narrative is, at this stage, simply figure description
- In general, ask these questions:
My workflow:
- First prepare the main result figures
- Core narrative is, at this stage, simply figure description

In general, ask these questions:
- What is interesting about your work?
My workflow:
- First prepare the main result figures
- Core narrative is, at this stage, simply figure description

In general, ask these questions:
- What is interesting about your work?
- Interesting for whom (e.g., for climate scientists or computer scientists)?
Write first, edit later
Write first, edit later
I like to start with the methods and end with the abstract:
Write first, edit later

I like to start with the methods and end with the abstract:
 - Methods, then
Write first, edit later

I like to start with the methods and end with the abstract:
- Methods, then
- Results and discussion, then
Write first, edit later

I like to start with the methods and end with the abstract:
- Methods, then
- Results and discussion, then
- Conclusion, then
Write first, edit later

I like to start with the methods and end with the abstract:
- Methods, then
- Results and discussion, then
- Conclusion, then
- Introduction, then
Write first, edit later

I like to start with the methods and end with the abstract:

- Methods, then
- Results and discussion, then
- Conclusion, then
- Introduction, then
- Abstract
• Write first, edit later
• I like to start with the methods and end with the abstract:
 • Methods, then
 • Results and discussion, then
 • Conclusion, then
 • Introduction, then
 • Abstract
• Use a spell check simultaneously
Editing and reviewing

- Write a first draft, take a step back (a day or two), then edit
Write a first draft, take a step back (a day or two), then edit
Ask someone from a different group / field to review as well
Editing and reviewing

- Write a first draft, take a step back (a day or two), then edit
- Ask someone from a different group / field to review as well
- What to look for:
Write a first draft, take a step back (a day or two), then edit.
Ask someone from a different group / field to review as well.
What to look for:
- Unfounded generalisations
Write a first draft, take a step back (a day or two), then edit
Ask someone from a different group / field to review as well
What to look for:
 - Unfounded generalisations
 - Results don't match the claims
Editing and reviewing

- Write a first draft, take a step back (a day or two), then edit
- Ask someone from a different group / field to review as well
- What to look for:
 - Unfounded generalisations
 - Results don't match the claims
 - Research questions / hypothesis are not clearly laid out
Editing and reviewing

- Write a first draft, take a step back (a day or two), then edit
- Ask someone from a different group / field to review as well
- What to look for:
 - Unfounded generalisations
 - Results don’t match the claims
 - Research questions / hypothesis are not clearly laid out
 - Figures are not easily understandable
Overview

- Authorship
Overview

- Authorship
- Selecting a journal
Authorship

- Different disciplines have different criteria
Different disciplines have different criteria
- Math: Mostly single authors
Different disciplines have different criteria

- Math: Mostly single authors
- Physics: Around 3-6 people
Different disciplines have different criteria
- Math: Mostly single authors
- Physics: Around 3-6 people
- Geoscience: Large teams of 10-15 people
Different disciplines have different criteria
- Math: Mostly single authors
- Physics: Around 3-6 people
- Geoscience: Large teams of 10-15 people
- High energy physics: International conglomerates (100s of people!)
Typically, an author has **done** one or more of the following
Authorship

- Typically, an author has **done** one or more of the following
 - Conceptualised the study
Typically, an author has **done** one or more of the following
- Conceptualised the study
- Written the code
Typically, an author has **done** one or more of the following
- Conceptualised the study
- Written the code
- Prepared the figures
Authorship

Typically, an author has done one or more of the following:

- Conceptualised the study
- Written the code
- Prepared the figures
- Written or edited the manuscript
Typically, an author has done one or more of the following:
- Conceptualised the study
- Written the code
- Prepared the figures
- Written or edited the manuscript
- Carried out related fieldwork or experiments
Typically, the following does not make you an author

- Providing feedback after a talk or in an isolated discussion
- Providing previously published data set
- Providing previously published code
- Reviewing someone else’s manuscript
Typically, the following **does not** make you an author:
- Providing feedback after a talk or in an isolated discussion
Authorship

- Typically, the following **does not** make you an author
 - Providing feedback after a talk or in an isolated discussion
 - Providing previously published data set
Typically, the following **does not** make you an author

- Providing feedback after a talk or in an isolated discussion
- Providing previously published data set
- Providing previously published code
Typically, the following does not make you an author
- Providing feedback after a talk or in an isolated discussion
- Providing previously published data set
- Providing previously published code
- Reviewing someone else’s manuscript
Selecting a journal

- Which discipline would benefit from your work?
Selecting a journal

- Which discipline would benefit from your work?
- Which journals come up more often in your own list of references?
Selecting a journal

- Which discipline would benefit from your work?
- Which journals come up more often in your own list of references?
- Which journals do your peers publish in?
Any questions or comments?