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fasst habe, keine anderen als die angegebenen Hilfsmittel und Quellen benutzt habe
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Abstract

The Intertropical Convergence Zone is an area characterized by high precipita-
tion within a narrow belt around the equator. The ITCZ migrates annually to
the warmer hemisphere, and the extent to which it ventures away from the
equator varies from year to year and across the different oceans and continents.
These variations drastically affect rainfall and droughts in the equatorial area
and beyond. Till now, various approaches have been proposed to quantify the
ITCZ, e.g. based on maximum precipitation or energy budgets. However, a
robust quantifier of the actual convergence of surface winds around the equator
is still lacking. Here I propose a method of quantifying the ITCZ mid-location
based on surface wind divergences. The latitudinal ITCZ mid-position was
defined as the minimum convergence over longitudes and validated by compar-
ing the given latitude to the ITCZ location as given by existing ITCZ position
proxies. I used the given latitudes to train different LSTMs to predict future
mid-locations of the ITCZ. I also looked at characteristics of the ITCZ width to
learn more about the influence of wind fields on the extent of the ITCZ. I used
a ConvLSTM network to graphically analyze the ITCZ belt. My results reveal
the interannual variability and trends in the ITCZ in the last half century.
The LSTM structures are feasible to predict the ITCZ mid-location for a short
period of time. The ConvLSTM structure gave first results for a graphical
analysis of characteristics like the width of the ITCZ.
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Zusammenfassung

Die Intertropische Konvergenzzone (ITCZ) ist eine schmales Gebiet rund um den
Äquator, das sich durch hohe Niederschläge auszeichnet. Diese Zone wandert jährlich
und ihre Ausdehnung variiert von Jahr zu Jahr. Diese Variationen bestimmen
die Regenfälle und Düren in der Äquatorregion und darüber hinaus. Bislang gibt
es verschiedene Ansätze um die ITCZ zu quantifizieren, z. B. auf der Grundlage
von Niederschlagsmaxima oder Energiebudgets. In dieser Arbeit schlage ich eine
Definition für die ITCZ basierend auf Winddivergenzen vor. Die mittlere Position
der ITCZ wurde als Breitengrad mit minimaler Divergenz definiert. Diese Definition
habe ich mit anderen ITCZ Variablen verglichen. Mit verschiedenen Zeitreihen für
die mittlere ITCZ-Position habe ich ein Long Short Term Memory (LSTM) trainiert,
um die zukünftigen Positionen vorherzusagen. Weiterhin habe ich ein convolutional
LSTM (Conv LSTM) auf den Divergenzwerten trainiert, um mehr über den Einfluss
der Divergenz auf die Ausdehnung der ITCZ zu erfahren und die ITCZ graphisch
vorherzusagen. Meine Ergebnisse zeigen die jährliche Variabilität und die Trends in
der ITCZ während des letzten halben Jahrhunderts auf. Die LSTMs sind gut dafür
geeignet, die mittlere Position der ITCZ für einen kurzen Zeitraum vorherzusagen.
Die ConvLSTM-Struktur lieferte erste Ergebnisse für eine grafische Analyse der
Breite der ITCZ.
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1 Introduction

The Intertropical Convergence Zone (ITCZ) is defined as a zone of low pressure
running around the entire globe at the equator, where the trade winds of the northern
and southern hemispheres flow together. The ITCZ region is characterized by a warm
and humid climate. Large parts of the world’s tropical rainforests are located in the
ITCZ. The ITCZ expresses itself as a narrow band of strong convection around the
equator with associated heavy precipitation (Waliser and Gautier, 1993; Schneider
et al., 2014). It can be defined as the convergence of the moist trade winds near
the surface, which leads to an ascent of air masses, condensation and precipitation
(Waliser and Gautier, 1993; Schneider et al., 2014). Around the globe, enormous
air masses are transported along the equator. In the ITCZ, the surfaces of land
and water heat up more than anywhere else on earth, as solar radiation is strongest
here (Schneider et al., 2014). Warm air rises rapidly and pulls ”supplies” from the
northern and southern hemispheres behind it.

The ITCZ migrates seasonally and its expansion and mid-position has influence on
the climate in the tropics and subtropics (Waliser and Gautier, 1993; Philander et al.,
1996). An accurate description of the seasonal different mid-positions of the ITCZ
over time can be used to identify patterns and predict future expansion of the ITCZ.

This thesis proposes a method to quantify the ITCZ mid-position and its migrations
with a fundamental and intuitive definition using surface wind data and wind di-
vergence. I used surface wind and divergence data from ERA5 reanalysis data at
0.25°grid resolution as a proxy for calculating the ITCZ mid-position in the Pacific
area. I compared this definition to definitions based on precipitation as a proxy. To
predict the ITCZ mid-location I calculated the latitudes of minimum divergence and
maximum precipitation and then used a long short term (LSTM) neural network for
prediction. Furthermore, I also trained a convolutional LSTM (Conv LSTM) to get
predictions of the ITCZ band as such and to get predictions of further meridional
extensions of the ITCZ.
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(a) Divergence (b) Precipitation

Figure 1: Seasonal migrations of the ITCZ based on a) monthly averaged divergence
data and b) monthly averaged precipitation data over the Pacific longitudinal averaged
between 130°E and -80°W averaged over the years 1979-2020.

2 Recent work

2.1 Intertropical Convergence Zone

The trade winds or doldrums are known for centuries by sailors and scientists as
reliable winds which blow east to west, north and south of the equator (Hadley, 1735).
The trade wind systems of the two hemispheres tend to converge in the equatorial
area, which leads to one of the definitions of the ITCZ as the convergence zone of
the trade winds (Barry and Chorley, 2009).

The ITCZ is responsible for 32% of global precipitation (Kang et al., 2018). The
amount of precipitation is much higher than the moisture coming from the ocean sur-
face below the ITCZ, so much of the vapor which is necessary for the convection must
be supplied by the moist and warm converging wind systems (Holton and Hakim,
2013; Schneider et al., 2014). Warm air masses ascent, cool down and condensate in
the central area of the ITCZ which leads to heavy precipitation (Schneider et al.,
2014).

The ITCZ shapes climate and society in the tropics and subtropics. It has ma-
jor influence on the East Asian Monsoon (Yancheva et al., 2007) but also has a large
impact on the rainfall in the tropics and on the anticyclonic subtropics. Current
studies show that the ITCZ has influence on global radiation budget, which has
impact on global temperature and precipitation (Su et al., 2017; Byrne and Schneider,
2018). However, the ITCZ width is narrowing as a result of global warming (Byrne
and Schneider, 2016a).

The ITCZ and the Hadley circulation form a seasonal circle (Waliser and Gau-
tier, 1993; Oort and Yienger, 1996). The ITCZ migrates seasonally between 5°S and
15°N (Waliser and Gautier, 1993). Figure 1 shows the monthly averaged annual cycle
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of the ITCZ mid-location based on divergence and precipitation over the Pacific.
Maps of the seasonal and monthly shifts of the ITCZ based on divergence and
precipitation as well as the seasonal migrations based on average daily data can be
found in the appendix. Overall it can be seen that the ITCZ shifts sinusoidal to
the north from spring to late summer and shifts back south from late summer to
spring independent of the used proxy. The further expansion to the north can be
explained by warmer sea surface temperatures in the Northern Hemisphere, larger
land masses and differences in coastal geometry (Philander et al., 1996). It has been
shown that the migrations of the ITCZ mid-location are nearly sinusoidal (Waliser
and Gautier, 1993). The ITCZ migrates annually to the warmer hemisphere, and
the extent to which it ventures away from the equator varies from year to year and
across the different oceans and continents (Schneider et al., 2014). These variations
drastically affect rainfall and droughts in the equatorial area and beyond.

On a geological timescale, the ITCZ was subject to major changes (Arbuszewski
et al., 2013; Haug et al., 2001). Since the last glacial maximum, the Atlantic ITCZ
migrated latitudinal away from the relational cooler hemisphere responding to dif-
ferent climate conditions (Arbuszewski et al., 2013). In South America regional
shifts in precipitation were linked to shifts in the mean latitude of the Atlantic ITCZ
which might be connected by Pacific-based climate variability (Haug et al., 2001). In
todays climate factors like the presence of polar ice cover or temperature variations
on high latitudes can also cause shifts of the ITCZ (Broccoli et al., 2006). These
shifts are again linked to shifts in trade winds and in the Hadley circulation.

2.2 ITCZ quantification

Today different approaches to quantify the ITCZ are used. In this thesis I focus
on approaches for the variation of ITCZ mid-location and on ITCZ width. There
is no fixed definition to identify the mid-location of the ITCZ but there are some
promising approximations based on different proxy variables. Previous work has
focused on energy constraints (Bischoff and Schneider, 2014), cloud temperature
(Waliser and Gautier, 1993), high precipitation (Gu et al., 2005) but also on wind
and divergence (Barry and Chorley, 2009; Berry and Reeder, 2014; Žagar et al., 2011).

The ITCZ and the ITCZ mid-latitude are originally defined as the convergence
of the Northern and Southern trade winds (Barry and Chorley, 2009). Convergence
is defined as negative divergence, which is defined as the rate at which air is spreading
out horizontally from a point. Therefore, divergence of a wind field ~V 2 is defined as
the sum of the change of the u-component of the wind in the longitudinal direction
and v-components of wind in latitudinal direction for a specific location.

div ~V 2 =
∂u

∂x
+
∂v

∂y
(1)

For values of div ~V 2 > 0 we speak of divergence of air masses. For values of div ~V 2 < 0
we speak of convergence of air masses.
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In addition to the ITCZ mid-latitude, the ITCZ meridional extent plays an im-
portant role for climate in the tropics. Compared to the ITCZ mid-latitude this
quantification hasn’t received so much attention yet, although its importance for
climate in the tropics is high (Byrne and Schneider, 2016a). ITCZ width influences
the extent of rain in the tropics and there are references which connects a narrowing
of the ITCZ to a warming climate (Byrne and Schneider, 2016b). The ITCZ width is
defined as the latitudinal distance between the latitude of the time mean ascending
branch of the Hadley circulation and the latitude of the time mean descent (Byrne
and Schneider, 2016a).

There have been several approaches to simulate and predict ITCZ shifts globally
and in specific regions. This is investigated a lot in the field of climate models like
CMIP5 and CMIP6, with focus on the simulation of the ITCZ and the influence
of shifts in the ITCZ on global climate (Xiang et al., 2017; Brown et al., 2013;
Narsey et al., 2020). But there are also approaches of spatial analysis and prediction
of the ITCZ using p-splines and Gaussian Markov Random Fields (Greco et al., 2018).

In this thesis I focused on lower tropospheric wind divergences as a proxy for the
ITCZ mid-location. I compared this method of quantifying the ITCZ mid-location
to approaches based on precipitation maxima (Adam et al., 2016a,b). The idea of
a connection of convective rainfall and divergence is not new and has been proven
in many areas (Watson and Blanchard, 1984). Figure 2 shows the anticorrelation
between divergence and precipitation for monthly averaged precipitation and di-
vergence values for the year 2020 in an area between 20°N and -20°S for longitude
-110°W. The precipitation Maxima and the divergence Minima are clearly visible
and anti-correlated. I used this anticorrelation between precipitation and divergence
to compare the mid-location given by minimum divergence to the mid-location given
by maximum precipitation. With the latitudes given by minimum divergence and
maximum precipitation I trained three different LSTMs to get predictions of future
mid-locations of the ITCZ.

ITCZ width changes with further climate warming (Byrne and Schneider, 2016b).
To get further information about the ITCZ characteristics I trained a ConvLSTM
to get a graphical prediction of future divergence and precipitation values to get
information about future extends of the ITCZ.
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(a) January 2020 (b) February 2020 (c) March 2020

(d) April 2020 (e) May 2020 (f) June 2020

(g) July 2020 (h) August 2020 (i) September 2020

(j) October 2020 (k) November 2020 (l) December 2020

Figure 2: Monthly divergence and precipitation in 2020 for longitude -110°W and
different latitudes between 20°N and -20°S.

3 Data

3.1 Study location and dataset

In this thesis, I used ERA5 reanalysis data with a resolution of 0.25 deg x 0.25 deg
for the period of 1979-2020 for precipitation and horizontal divergence at 1000 hPa
pressure level. The values of precipitation are taken from the ERA5 hourly dataset
on single levels from 1979 to present. The values of divergence are taken from the
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ERA5 hourly dataset on pressure levels from 1979 to present.

Precipitation is reported in meter (m) over a 0.25 deg x 0.25 deg grid. Diver-
gence is reported as the rate at which air is spreading out horizontally from a point,
per square meter (s−1). Negative values of the divergence are called convergence. For
plotting issues, I also used u and v components of the wind. The u-component of the
wind is the eastward component of the wind given as horizontal speed of air, which
is moving towards the east (ms−1). A negative sign indicates a westward movement.
The v-component of the wind is the northward component of the wind also given as
horizontal speed of air, which is moving towards the north (ms−1). A negative sign
indicates a southward movement.

I used hourly data sampled four times a day and averaged it to daily data as
well as to monthly data. I decided to limit the research area to the Pacific between
130°E to -90°W. For predictions I limited this area to -110°W to -100°W because of
high anticorrelation between divergence and precipitation.

4 Method

4.1 Estimating mid-latitudes of ITCZ

For calculating an index for the mid-latitudes of the ITCZ I used daily data between
-110°W and -100°W and -20°S and 20°N and for comparison between 150°E and
160°E and -20°S and 20°N.

I followed three different approaches and compared the results. First I calculated
the mid-latitude of the highest precipitation by taking the latitude of the maximum
time weighted precipitation P over a specific longitude range.

φmax = argmaxP (2)

Second I implemented the index given by Adam et al., which also defined the ITCZ
mid-latitude as the latitude of maximum precipitation (Adam et al., 2016a,b). Here
the maximum precipitation is calculated as an expected latitude, which was weighted
by the 10th power of the area weighted precipitation P which was integrated between
-20°S and 20°N on a latitudinal scale (Adam et al., 2016a). For comparison I called
the latitude given by this definition φadam.

φadam =

∫ 20◦N
−20◦S φ((cos(φ)P )10∫ 20◦N
−20◦S((cos(φ)P )10

(3)

Finally, for getting the latitude of the minimum divergence I calculated the minimum
of the divergence D.

φmin = argminD (4)

For comparing the different latitude calculations I used the Pearson correlation
between each two of the latitude estimates φmin, φmax and φadam given here as X
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and Y

r =
cov(X, Y )

σXσY
=

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
∑n

i=1(yi − ȳ)2
(5)

where x̄ and ȳ are the means of the compared latitude samples.

4.2 Artificial neural networks

In this study I predicted time series of latitudes and time series of spatial distributed
values using neural networks. A neural network (NN) is built up of many units which
are known as neurons and are organized in layers (Goodfellow et al., 2016). Many
real-world problems are too complicated to be solved by a direct mapping from one
function to another. This problem can be tackled by deep neural networks which
splits the initial complicated mapping in a series of simpler mappings which each
are described by a different layer in the model. The initial layer in a NN is used to
process the input and the final layer produces the output of the network. In between
there are hidden layers which extract features from the data.
To predict future ITCZ mid-latitudes which are only distributed over time, I used
long short term memories (LSTM) which are a special type of recurrent neural
network (Hochreiter and Schmidhuber, 1997). To predict the actual divergence
and precipitation values which are spatially and temporally distributed I used
convolutional long short term memories (Conv LSTM) (Xingjian et al., 2015).

4.2.1 Recurrent neural networks

Recurrent neural networks (RNN) are neural networks which are used for processing
and predicting sequential data (Rumelhart et al., 1986). A RNN implements feedback
connections or cycles and share parameters across different layers of a model to
generalize over sequences (Goodfellow et al., 2016). Using feedback connections
makes it possible to store information over sequences in form of activations (Elman,
1990). The activations of the previous time step are then used as inputs to the
network at the current time step and influence the predictions. Compared to a simple
feed forward neural network which is trained on independent data points RNNs do
not need independent data. Sequential data X can be distributed over time T giving
us a time series x(1), ..., x(T ) where one data point depends on the previous point.
One challenge in RNNs is to learn long-term dependencies using backpropagation
(Goodfellow et al., 2016). Gradients tend to vanish when propagated over many time
steps or on the opposite sometimes explode (Bengio et al., 1994). LSTMs give a
solution to this problem by introducing a memory cell with self-loops to maintain a
state over time and nonlinear gating units to regulate information flow in and out of
the cell (Hochreiter and Schmidhuber, 1997).

4.2.2 Long Short-Term Memory

LSTMs introduce LSTM cells which have a self-loop to solve the problem with
propagating back the error (Hochreiter and Schmidhuber, 1997). The LSTM cells
have the same input and the same output as a normal RNN (Goodfellow et al., 2016).
But they introduce internal mechanisms which are called gates to control information
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flow. These gates determine which information is important and should be taken
further along and which information should be forgotten. The input of a LSTM cell
xt is computed by a normal artificial neuron unit. Its value is propagated forward to
the state unit ct if the input gate it allows it. The input gate is computed with a
sigmoid unit to get a value between 0 and 1.

it = σ(bi + Uixt +Wiht−1) (6)

ht describes the current hidden layer vector, which contains the output of all the
LSTM cells. bi are the biases, Ui are the input weights and Wi describe the recurrent
weights for the input gate. The state unit has a linear self-loop which is delayed
by one time step and feeds back the previous state to the state unit. The weight
of the state unit is controlled by the forget gate ft (for time step t and cell i). The
forget gate sets the weight of the state unit between 0 and 1 by applying a sigmoid
function σ.

ft = σ(bf + Ufxt +Wfht−1) (7)

bf are the biases, Uf are the input weights and Wf describe the recurrent weights
for the forget gate. This forget function is now used to update the state unit ct

ct = ft � ct−1 + it � tanh(bc + Ucxt +Wcht−1) (8)

Here b, U and W describe the biases and the input and recurrent weights into the
LSTM cell. � stands for the pointwise multiplication. The state unit can also be
used as one time step delayed input to gating units.

ht = tanh(ct) � ot (9)

ot = σ(bo + Uoxt +Woht−1) (10)

bo are the biases, Uo are the input weights and Wo describe the recurrent weights for
the output gate. The output or hidden state vector ht can be controlled and shut off
by the output gate ot. The output gate is also controlled by a sigmoid function while
the actual output is calculated by using a hyperbolic tangent function. (Hochreiter
and Schmidhuber, 1997; Gers et al., 2000; Goodfellow et al., 2016).

4.2.3 Conv LSTM

The LSTM approach performs good for sequential data like the ITCZ mid-latitude.
For predicting the divergence values however I needed to extend the model to spatio-
temporal sequences. Convolutional neural networks (CNN) are a method which
works well on learning images which are also spatial distributed (LeCun et al., 1989).
The divergence values can be interpreted as sequential images. A possible approach
of combining the sequential power of an LSTM and the spatial abilities of a CNN is
using a convolutional LSTM (ConvLSTM) which was first introduced for precipitation
nowcasting (Xingjian et al., 2015). The advantage of using a ConvLSTM is that
this model also take spatial correlations into account. In a ConvLSTM all inputs
x1, ...., xt, all cell outputs c1, ..., ct, all hidden states h1, ..., ht and gates it, ft and ot
are 3D tensors where the first dimension is sequential and the last two are the spatial
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dimensions. To get the future state of a cell. a convolutional operator is applied in
the state-to-state and input-to-state operations.

it = σ(bi + Ui ? xt +Wi ? ht−1) (11)

ft = σ(bf + Uf ? xt +Wf ? ht−1) (12)

ot = σ(bo + Uo ? xt +Wo ? ht−1) (13)

ct = ft � ct−1 + it � tanh(bc + Uc ? xt +Wc ? ht−1) (14)

ht = tanh(ct) � ot (15)

? stands for the convolutional operator and � for the pointwise multiplication.

4.3 Predicting ITCZ mid-location using LSTMs

To predict the ITCZ mid-location I used LSTMs over the area of -100°W and -110°W
and -20°S and 20°N. I first calculated the latitude of the highest precipitation by the
definitions given by Equation (2) and Equation (3) to get two datasets of latitudes of
highest precipitation over time. I also calculated the latitude of the lowest divergence
by the definition given by Equation (4) to get a dataset of the latitudes of lowest
divergence over time.

4.3.1 Data preparation

Divergence and precipitation are strongly fluctuating temporally but also spatially.
For calculating and predicting the mid-position of the ITCZ I am interested in the
latitudes for a specific longitude range. To get less fluctuating spatial distributed
values, I took the arithmetic mean of precipitation and divergence over longitudes
over the area of interest. To get rid of some of the temporal fluctuations, I used a
mean filter (also known as uniform filter) of size 7 over the temporal dimension for
both variables. The final dataset for the range of interest for calculating the latitude
of the ITCZ mid-position is therefore a 2D Tensor with a temporal and a latitudinal
dimension.
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(a)

(b) (c) (d)

Figure 3: a) Structure of the input to the LSTM trained for single day predictions
b) LSTM model structure for single day predictions for the latitude of minimum
divergence c) LSTM model structure for single day predictions for the latitude of
maximum precipitation d) LSTM model structure for single day predictions for the
latitude of maximum precipitation as given by Equation (3)

4.3.2 Single day predictions

For the single day predictions, I used the daily dataset between -110°W and -100°W
and between -20°S and 20°N. I took the arithmetic mean over all longitudes and
used a 7-day mean filter over time. I then calculated the latitudes of maximum
precipitation using Equation (2) and Equation (3) as well as the latitude of minimum
divergence as given by (4). I then trained three LSTMs to predict the latitudes
of maximum precipitation or minimum divergence respectively for a single day.
Generally the input of an LSTM needs to take the shape of a 3D array. The x-axis
represents the number of sequences, here the time dimension over the years 1979
until 2020 on a 1-day scale. In total, I got 13717 sequences for training using 90
% of the total available data for training. I held back 10 % of the data for testing.
The y-axis represents the length of a sequence. In this case, this is only 1 day. The
z-axis describes the number of time steps (or features) which needed to be taken
into account to predict the next time step. I set this to 30, so the last 30 days are
used to predict the next day. An overview of the input shape is illustrated in Figure
3a. The output of the LSTM is the predicted latitude of maximum precipitation or
minimum divergence for the next time step.
The structure of the LSTM can be found in Figure 3b. First a LSTM layer is used
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to output hidden states for each time step input. After the LSTM layer, a dropout
layer is applied for regularization and 20 % of the hidden states are probabilistically
removed as inputs to the next layer. This has the advantage that the network
becomes more robust and overfitting is prevented (Srivastava et al., 2014). Finally, a
dense layer is applied to compare the predictions to the original values. The number
of neurons is determined by using an autocorrelation function in advance. The
autocorrelation function can be used to calculate if a time series is still dependent
on its past and therefore I was using as many neurons as necessary to satisfy this
requirement. As loss function, I selected Mean Square Error (MSE)

MSE =

∑n
i=1(Yi − Ŷi)

2

n
(16)

where n is the number of training examples, Yi is the actual value and Ŷi is the pre-
dicted value by the LSTM. I used the Adam optimizer for learning rate optimization
(Kingma and Ba, 2014) with a learning rate of 0.001. To compare the results of the
prediction to the true values I used Pearson correlation again.

(a) (b) (c)

Figure 4: Structure of the LSTM trained for multi day predictions based on a)
latitude of minimum divergence as given by Equation (4) b) latitude of maximum
precipitation as given by Equation (2) and c) latitude of maximum precipitation as
given by Equation (3).

4.3.3 Multi day predictions

For the multi day predictions, I also used the daily dataset between -110°W and
-100°W and -20°S and 20°N. I again used the arithmetic mean over all longitudes and
used the 7 days mean filter over time. The longitudes were again calculated according
to the known procedures given by Equation (2), Equation (3) and Equation (4). As
input I used the same data structure as illustrated in Figure 3a with the last 30 days
used to predict the next days. However, I now wanted not only one time step as
output but a much longer period of time. Therefore, I adjusted the last layer of the
network to output a longer sequence as prediction. Here I set the length to 60 days
to get a prediction for the next two months. The architecture of the three LSTMs
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can be found in Figure 4. As loss I again used the MSE loss as given in Equation
(16). As optimizer the Adam optimizer was applied again.

(a) (b)

Figure 5: a) Input structure to the ConvLSTM. The input is a 5D Tensor with
the shape (number of sequences, number of frames, number of longitudes, number
of latitudes, number of channels) where the number of frames is fixed to 4, the
longitudes are between -110°W and -100°W with a 0.25°resolution, the latitudes are
between -20°S and 20°N also on a 0.25°grid resolution and the number of channels is
fixed to 1. b) shows the architecture of the ConvLSTM.

4.4 Predicting ITCZ proxy values using ConvLSTMs

Up to now I focused on predicting the ITCZ mid-location as a latitude. To further
predict characteristics like the ITCZ width I applied a ConvLSTM network for a
graphical prediction of the actual divergence and precipitation values. For that
purpose I again used the daily dataset between -110°W and -100°W and -20°S and
20°N. For training and testing I limited the dataset to 10 years time from 2011 until
2020. Concerning the ConvLSTM I used daily data and applied a 7-day mean filter
over time before training and predictions.
ConvLSTMs are a combination of CNNs and LSTMs which are able to simultaneously
process spatial and temporal information (Xingjian et al., 2015). I used this to
predict the next four frames based on the last four frames for a time sequence. The
input structure to the ConvLSTM can be found in Figure 5a. I applied a very basic
architecture for the ConvLSTM with only two ConvLSTM layers. In between the
ConvLSTMs layers I applies one layer Batch Normalization which is used to normalize
the layer input (Ioffe and Szegedy, 2015). The architecture for the ConvLSTMs can
be found in 5b. For the ConvLSTM layers I used a kernel size of 3x3 and a filter size
of 32. For training I again used the Adam optimizer and MSE loss.
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5 Results

5.1 Estimating mid-latitudes of ITCZ

A visual description of monthly anticorrelation can be found in Figure 2 for the
single longitude -110°W for one year. I found an anticorrelation for larger areas in
daily data as well. There is a moderate anticorrelation between the original values of
precipitation and divergence in the area of -100°W and -110°W. The only moderated
anticorrelation can be explained due to the time and spatial delay between divergence
and precipitation. Air masses have to arise first (divergence) before they start to
condensate. The anticorrelation gets a bit higher, when I exclude data points with
zero precipitation. I found a strong anticorrelation when taking the longitudinal
mean and an even higher anticorrelation when taking longitudinal mean and 7 days
mean filter over time. For the exact results please refer to table 1 and Figure 6. The
values for anticorrelation are lower for areas with larger landmasses or areas which
are closer to landmasses. An overview of the anticorrelation values for an area closer
to landmasses can be found in the appendix.
After calculating mid-latitudes I looked at the correlation of the calculated latitudes
for precipitation and divergence. I found strong correlation between divergence and
precipitation latitudes and very strong correlation between the two precipitation
indexes. For exact results please refer to table table 2 and Figure 7. Again I got
lower results for areas nearer to landmasses or with larger landmasses included, so I
sticked to areas with mostly sea and restricted the prediction area on 10 longitudes
between -110°W and -100°W. An overview of the correlation between latitudes for
an area closer to landmasses can be found in the appendix.
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Table 1: Pearson correlation values for divergence and precipitation for different data
configurations between -110°W and -100°W and -20°S and 20°N.

Pearson correlation divergence/
precipitation

Original data -0.363
Precipitation > 0 -0.372
Precipitation > 0.001 -0.352
Precipitation > 0.002 -0.304
Longitudinal mean -0.601
Longitudinal mean and 7 days
mean filter time

-0.735

(a) (b)

(c)

Figure 6: Daily divergence and precipitation values between -110°W and -100°W for
a) the original dataset, b) the dataset after taking the mean over longitudes and c)
the dataset after taking the mean over longitude dimension and taking a mean filter
of size 7 over time dimension.
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Table 2: Pearson correlation values for latitudes of maximum precipitation as given
by Equation (3), maximum precipitation as given by Equation (2) and minimum
divergence as given by Equation (4) between -100°W and -110°W and -20°S and
20°N.

Adam index Maximum
precipitation

Minimum
divergence

Adam index 1 0.941 0.709
Maximum
precipitation

0.941 1 0.701

Minimum
divergence

0.709 0.701 1

(a) (b)

(c)

Figure 7: ITCZ mid-latitudes comparison between -110°W and -100°W for a) maxi-
mum precipitation and minimum divergence, b) maximum precipitation and maxi-
mum precipitation calculated by Equation (3) and c) maximum precipitation and
minimum divergence.
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5.2 Predicting ITCZ mid-location using LSTMs

5.2.1 Single day predictions

The single day predictions gave good results for all three LSTMs. I got good results
for training 30 epochs with a batchsize of 64 for predicting the latitudes of minimum
divergence. The results of the prediction and a comparison of the predicted and
observed latitudes can be found in Figure 8. The Pearson correlation between the
latitude of observed data and the latitude of predicted data was 0.887. I got even
better results for the maximum precipitation as given by the Adam index. Here I
got a Pearson correlation between the latitude of observed data and the latitude
of predicted data of 0.936. For the LSTM trained on the latitude of maximum
precipitation as given by Equation (3) I got an Pearson correlation between the
latitude of observed data and the latitude of predicted data of 0.905. The results for
the single day predictions for precipitation can be found in the appendix.
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Figure 8: Latitude of minimum divergence predictions for area between -110°W and
-100°W and -20°S and 20°N trained 30 epochs with a batchsize of 64. a) shows the
training data and the predictions for the time span of 40 years from 1979 until 2020.
b) Shows the original data and the prediction for 2 years from 2019 until 2021. c)
Shows the correlation between the latitude of observed data and the latitude of
predicted data for the complete area and time used for predictions.
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Figure 9: Latitude of minimum divergence predictions for area between -110°W and
-100°W and -20°S and 20°N for different timesteps ahead predictions trained 400
epochs with a batchsize of 4.

5.2.2 Multi day predictions

For the multi day predictions I trained again three LSTMs on maximum precipitation
latitudes and minimum divergence latitudes. I trained the LSTMs to archieve good
results for 2 months ahead predictions (60 days). Compared to the single day
predictions the results dropped with longer predictions ahead. For the LSTM
trained on the latitude of minimum divergence I got the best results for training
200 epochs with a batchsize of 4. The 60 days ahead predictions still got a Pearson
correlation between latitudes of observed data and latitudes of predicted data of
0.533. The Pearson correlation for one day ahead predictions has been 0.923, 15
days ahead it already dropped to 0.757 and 30 days ahead it went down to 0.649.
The prediction results for divergence for different days ahead can be found in Figure
9 and Figure 10. I got similar results for the two other proxies for the latitude of
maximum precipitation. The corresponding results can be found in the appendix.
For the latitude of maximum precipitation as given by Equation (3) I got a Pearson
correlation of 0.966 for predicting one day ahead, for 15 days ahead it dropped
to 0.795, for 30 days ahead it went further down to 0.716 and for 60 days it was
0.547. For the latitude of maximum precipitation as given by Equation (2) I got a

23



Pearson correlation of 0.938 for predicting one day ahead. For 15 days ahead I got a
correlation of 0.769, for 30 days ahead it dropped further down to 0.718 and for 60
days ahead predictions Pearson correlation was 0.572. The corresponding results can
be found in the appendix.
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Figure 10: Latitude of minimum divergence predictions for area between -110°W
and -100°W and -20°S and 20°N for different timesteps ahead predictions trained 400
epochs with a batchsize of 4.

5.3 Predicting values over time using Conv LSTMs

For predicting the actual divergence values over time I trained a ConvLSTM to
predict four frames. I used 7-day mean filtered data for the time dimension. I
got acceptable first results for the graphical predictions with a good correlation
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between true and predicted values. Figure 11 shows the graphical results for four
days predictions compared to the original values. The correlation four the different
frames can be found in Figure 12. The ConvLSTM was able to capture similar
structures compared to the real divergence belt in the ITCZ however the width
and the exact shapes are not yet correctly captured. Interestingly I got a better
correlation between the results for four frame ahead predictions compared to one
frame ahead predictions. Future research should certainly take another look on this
and continue to work on this approach and to try different architectures to get more
accurate graphical results.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 11: Visual results for the ConvLSTM trained on divergence for frames based
on data beginning 1st January 2011 until 4th January 2011 a) - d) show the real
values for that time period, e)-h) show the predicted values for the same time period.
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(a) (b) (c) (d)

Figure 12: Correlation results for divergence for the ConvLSTM for different frames
based on data beginning 1st January 2011 until 4th January 2011. a) shows results
for frame 1, b) for frame 2, c) for frame 3 and d) for frame 4.
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Figure 13: Anomaly map for a) divergence and b) precipitation for the longitudinal
mean in the area -110°W to -100°W and -20°S and 20°N for the years 2011 to 2020.

26



(a)

2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021

1.0

0.5

0.0

0.5

1.0

1e 5

Latitude 20.0
Latitude 0.0
Latitude -20.0

(b)

2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021

0.0000

0.0002

0.0004

0.0006

0.0008 Latitude 20.0
Latitude 0.0
Latitude -20.0

Figure 14: Anomaly timeseries for a) divergence and b) precipitation for the longitu-
dinal mean in the area -110°W to -100°W and -20°S and 20°N for the years 2011 to
2020.

6 Discussion

In this thesis I proposed a method to calculate the latitudinal ITCZ mid-location
based on divergence. Therefore, I used this definition to predict the time series
of ITCZ mid-location to predict shifts in the ITCZ. Furthermore, I also used the
original time series of divergence values to predict the actual values over time using
ConvLSTMS to predict the expansion of the ITCZ graphically.

I evaluated the anticorrelation between precipitation and divergence as proxies
to calculate the latitudinal ITCZ mid-location. I used the found anticorrelation to
calculate the latitudinal mid-location based on different definitions on maximum
precipitation and on minimum divergence and compared the results. The calculated
latitudes showed good correlation so I used those latitudes to train different LSTMs.
I got good results for single day predictions for all three ITCZ mid-location proxies.
I was also able to predict trends in the ITCZ mid-location with multi day predictions
up to 60 days ahead. I then applied a ConvLSTM on the actual divergence and
precipitation values which gave me promising first results.

I was able to show that the predictions of the ITCZ mid-latitude works good for small
time horizons up to 30 days but accuracy drops with longer predictions ahead. The
60 days prediction was only partially accurate. Here more work on improving the
network or even combining ITCZ mid-location proxies should be done. Wind and rain
are also highly variable and fluctuating on daily basis. For trend predictions of the
ITCZ daily data might not be needed so it might be better to use data on weekly or
even monthly level. The divergence index also might become more stable with weight-
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ing it to an area similar to the calculations done by Adam et al. for precipitation as
shown in Equation (3) (Adam et al., 2016a). Also there are other proxies for ITCZ
mid-location as well as width which seems more stable. Schneider et al. showed that
using energy budgets and defining the ITCZ mid-latitude as the energy flux equator
is a convenient and stable proxy for ITCZ (Schneider et al., 2014). Comparing the
divergence approach to these proxies instead of precipitation might also be interesting.

For further generalization my approach also needs to be applied to larger areas.
I only tested in areas without any larger landmasses like coastlines or islands. I only
tested in the Pacific region but especially when it comes to the connection of ITCZ
and monsoon it would be interesting to also test in Western Atlantic or Indian Ocean.

Further work should also be done on an anomaly dataset of the ITCZ mid-location.
The anomalies for the divergence and precipitation for the last 10 years are shown in
Figure 13 and Figure 14. The anomalies seem to show regular patterns especially
in the area of the ITCZ. An anomaly evaluation could be used to find and predict
anomaly patterns in the ITCZ for example in connection to El Niño-Southern Oscil-
lation (ENSO). This could also be used to investigate the response of the ITCZ to a
warming climate.

The ITCZ has been reported to become narrower over the recent decades and
climate models also predict a further narrowing of the ITCZ (Byrne et al., 2018).
I mainly focused on the ITCZ mid-location but also the ITCZ width and related
the ITCZ strength play a big role for hydroclimates in tropical regions (Byrne and
Schneider, 2016b). It can be observed that a narrowing and strengthening of the
ITCZ leads to a strengthening in precipitation in the ITCZ region as well as to
less humidity in the subtropics (Byrne and Schneider, 2016b; Byrne et al., 2018;
Hohenegger and Jakob, 2020). With the ConvLSTM approach I tried to give a
graphical prediction of the ITCZ band over time. Predicting the LSTM using different
spatio-temporal artificial neural network architectures with different ITCZ proxies
might bring insights in the future structure of the ITCZ.

Extending the ConvLSTM to different heights might also bring more insights on
characteristics of the ITCZ. I tried predicting the ITCZ with a two dimensional
ConvLSTM but especially divergence and its relation to the Hadley cell is rather
spatially three dimensional on different pressure levels. Future research could extend
the ConvLSTM or different spatio-temporal prediction approaches to different pres-
sure levels and to the full Hadley circulation.
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7 Appendix

(a) Divergence Spring (b) Precipitation Spring

(c) Divergence Summer (d) Precipitation Summer

(e) Divergence Autumn (f) Precipitation Autumn

(g) Divergence Winter (h) Precipitation Winter

Figure 15: Average seasonal divergence and precipitation averaged over the years
1979-2020.
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(a) Divergence January (b) Precipitation January

(c) Divergence February (d) Precipitation February

(e) Divergence March (f) Precipitation March

(g) Divergence April (h) Precipitation April

(i) Divergence May (j) Precipitation May

(k) Divergence June (l) Precipitation June

Figure 16: Average monthly divergence and precipitation averaged over the years
1979-2020 for January to June.
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(a) Divergence July (b) Precipitation July

(c) Divergence August (d) Precipitation August

(e) Divergence September (f) Precipitation September

(g) Divergence October (h) Precipitation October

(i) Divergence November (j) Precipitation November

(k) Divergence December (l) Precipitation December

Figure 17: Average monthly divergence and precipitation averaged over the years
1979-2020 for July to December.
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Table 3: Pearson correlation values for divergence and precipitation for different data
configurations between 160°E and 150°E and -20°S and 20°N.

Pearson correlation divergence/
precipitation

Original data -0.216
Precipitation > 0 -0.204
Precipitation > 0.001 -0.275
Precipitation > 0.002 -0.31
Longitudinal mean -0.482
Longitudinal mean and 7 days
mean filter time

-0.651

Table 4: Pearson correlation latitudes for maximum precipitation as given by Adam
et al. (Adam et al., 2016a), maximum precipitation and minimum divergence between
160°E and 150°E and -20°S and 20°N.

Adam index Maximum
precipitation

Minimum
divergence

Adam index 1 0.895 0.311
Maximum
precipitation

0.895 1 0.311

Minimum
divergence

0.311 0.311 1

(a) Divergence (b) Precipitation

Figure 18: Seasonal migrations of the ITCZ based on a) divergence and b) precipita-
tion. Daily averaged data averaged over the years 1979-2020. Longitudinal average
over a window over the Pacific between -110°W and -100°W
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Figure 19: Latitude of maximum precipitation as given by the Adam index predictions
for area between -110°W and -100°W and -20°S and 20°N trained 20 epochs with a
batchsize of 32. a) shows the training data and the predictions for the time span
of 40 years from 1979 until 2020. b) Shows the original data and the prediction
for 2 years from 2019 until 2021. c) Shows the correlation between the latitude of
observed data and the latitude of predicted data for the complete area and time used
for predictions.
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Figure 20: Latitude of maximum precipitation as given by (2) predictions for area
between -110°W and -100°W and -20°S and 20°N trained 30 epochs with a batchsize
of 32. a) shows the training data and the predictions for the time span of 40 years
from 1979 until 2020. b) Shows the original data and the prediction for 2 years from
2019 until 2021. c) Shows the correlation between the latitude of observed data and
the latitude of predicted data for the complete area and time used for predictions.
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Figure 21: Latitude of maximum precipitation as given by Adam et al. (Adam
et al., 2016a), for area between -110°W and -100°W and -20°S and 20°N for different
timesteps ahead predictions trained 400 epochs with a batchsize of 4. a) shows the
correlation of the latitudes of observed data and the predicted data for the first day
ahead prediction. b) shows the correlation of the latitudes of observed data and the
predicted data for 15 days c) for 45 days and d)for 60 days ahead prediction.
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Figure 22: Latitude of maximum precipitation as given by Adam et al. (Adam
et al., 2016a), for area between -110°W and -100°W and -20°S and 20°N for different
timesteps ahead predictions trained 400 epochs with a batchsize of 4. a) shows the
predicted latitudes one day ahead, b) shows the predicted latitudes 30 days ahead
and c) shows the predicted latitudes 60 days ahead.
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Figure 23: Latitude of maximum precipitation for area between -110°W and -100°W
and -20°S and 20°N for different time steps ahead predictions trained 300 epochs
with a batchsize of 4. a) shows the correlation of the latitudes of observed data and
the predicted data for the first day ahead prediction. b) shows the correlation of
the latitudes of observed data and the predicted data for 15 days c) for 45 days and
d)for 60 days ahead prediction.
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Figure 24: Latitude of maximum precipitation as given by Equation (2) for an area
between -110°W and -100°W and -20°S and 20°N for different time steps ahead
predictions trained 300 epochs with a batchsize of 4. a) shows the predicted latitudes
one day ahead, b) shows the predicted latitudes 30 days ahead and c) shows the
predicted latitudes 60 days ahead.
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