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Main idea
Graph neural networks for ENSO forecasting

Donges, 2015.

D We want to forecast ENSO.
D Climate networks offer a neat method to represent the world as a graph.
D Can we exploit such graph structure for ENSO forecasting?
D But how to construct the network?

D In the deep learning spirit: let’s just learn it.
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Why not CNNs?
Convolutional networks achieve SOTA.

Disadvantages of CNNs for seasonal and long range forecasting

D Translational equivariance.
D But: location is important.

D Spatial locality bias.
D But: teleconnections are important.

D CNNs use all grid cells.
D But: sometimes, only oceanic variables suffice.
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Why GNNs?
Graph neural networks. [Credits: Geiger, 2021]

Advantages of GNNs

D Scales better than MLPs.
D More flexible than CNNs.
D More efficient than RNNs.
D Can model teleconnections due to non-Euclidean neighborhoods.
D Improves interpretability (structure encoded in graph).
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Contributions
A dense paper.

D We propose the first application of GNNs to long range and seasonal forecasting.
D Building upon established previous research we develop and open-source Graphino, a
flexible graph convolutional network architecture for long range forecasting applications in
the climate and earth sciences.

D We introduce a novel graph structure learning module, which makes our model
applicable even without a predefined connectivity structure.

D We show that our model is competitive to state-of-the-art statistical and dynamical ENSO
forecasting systems, and outperforms them for forecasts of up to six months.

D We exploit our model’s interpretability, to show how it learns sensible connections that are
consistent with existing theories on ENSO dynamics predictability.

4



Overview
of the structure.

D Goal: Forecast Oceanic Niño Index (ONI) for a fixed lead time.
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Problem Setup
The formalities.

D G = (V, E), where each Vi ∈ V, 1 ≤ i ≤ N, is a node of a gridded climate dataset.
D For each time t = 1..T , node feature vector Vt

i ∈ RD of climatic variable.
D Adjacency A ∈ {0, 1}N×N with (i , j) ∈ E ⇔ Aij = 1.
D Snapshot measurement Xt = (Vt

1, ..V
t
n) ∈ RN×D

D For window size w , concatenate to obtain X = hstack(Xt1 , ..Xtw ) ∈ RN×wD .
D Target Y = Ytw+h ∈ R, ONI index for lead time h.
D Loss L: MSE.
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GNNs
Graph Neural Networks.

If you haven’t yet, watch it!
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GCNs
Graph Convolutional Networks.

D Node embeddings Zl
i for layer l and node i , set Z0 = X.

D Next layer: Zl = σ
(
AZl−1Wl

)
∈ RN×Dl .

D For continuous A, this is a weighted sum inside the sigmoid.
D Aggregate output of last layer L to obtain graph embedding:
g = Aggregate

(
ZL
1, ..,Z

L
N

)
∈ RDL .

D Finally, use an MLP to forecast ONI: Ŷ = MLP(g).
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Implementation details
Deep Learning = bag of tricks.

D GCNs are typically shallow, in this case 2 and 3 layers.
D Followed by 2 layer MLP.
D Batch normalization, no dropout.
D Residual connections and jumping knowledge.
D Aggregation functions: mean, sum.
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The Structure Learner
A data-driven adjacency.

D To obtain the adjacency A, use static node representations X̃ ∈ RN×d̃1 .
D X̃: SST, heat content anomalies, latitude and longitudes.

M1 = tanh
(
α1X̃W̃1

)
∈ RN×d̃2 , (1)

M2 = tanh
(
α1X̃W̃2

)
∈ RN×d̃2 , (2)

A = sigmoid (α2M1M
ᵀ
2 ) ∈ {0, 1}

N×N . (3)

D α1,α2 hyperparameters controlling the spread of values and confidence in edges.
D Finally, set all but largest e edge weights to 0 to enforce desired sparsity.
D Add self-loops to the graph.
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Experiments
Data

D SODA reanalysis dataset (1871-1973).
D Climate model simulations from CMIP5.

D Augmentation is needed for deep learning.

D Test set: GODAS dataset (1984-2017).
D Grid resolution 5 degrees, locations in 55S − 60N and 0− 360W .
D N = 1345 nodes after filtering out terrestrial ones.
D Features: SST and heat content anomalies, window w = 3 months.
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Experiments
Results

Figure: 6 month lead predictions.

D Outperforms state-of-the-art CNN of for up to 6 lead months
D Outperforms the competitive dynamical model SINTEX-F for all lead times.
D Why the decrease in performance for more than six lead months?
D Hypothesis: learning connectivity structure makes the model more prone to overfitting.
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Interpretability
We can analyze the graph!

D The authors employ eigenvector centrality to visualize connectivity.
D But: importance 6= centrality.
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Interpretability
Most Positive Ollivier Ricci Curvature

D Top: Eigenvector centrality. Bottom: nodes with top 10% positive edges. 14



Interpretability
Most Negative Ollivier Ricci Curvature

D Top: Eigenvector centrality. Bottom: nodes with top 10% negative edges. 15



Interpretability
Edges Connected to Node with Highest Negative Unnormalized Ollivier Ricci Curvature
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Interpretability
Edges Connected to Node with Highest Eigenvector Centrality
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