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Graph neural networks for ENSO forecasting

Donges, 2015.

+ We want to forecast ENSO.

Climate networks offer a neat method to represent the world as a graph.

+

+

Can we exploit such graph structure for ENSO forecasting?
But how to construct the network?

+

+ In the deep learning spirit: let’s just learn it.
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Why not CNNs? CTOBINGEN

Convolutional networks achieve SOTA.
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Disadvantages of CNNs for seasonal and long range forecasting

+ Translational equivariance.
+ But: location is important.
+ Spatial locality bias.
+ But: teleconnections are important.
+ CNNs use all grid cells.
+ But: sometimes, only oceanic variables suffice.
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Why GNNs? CTOBINGEN

Graph neural networks. [Credits: Geiger, 2021]
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Advantages of GNNs

+ Scales better than MLPs.
More flexible than CNNs.
More efficient than RNNs.
Can model teleconnections due to non-Euclidean neighborhoods.

+

+

+

+ Improves interpretability (structure encoded in graph).
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A dense paper.

+ We propose the first application of GNNs to long range and seasonal forecasting.

+ Building upon established previous research we develop and open-source Graphino, a
flexible graph convolutional network architecture for long range forecasting applications in
the climate and earth sciences.

+ We introduce a novel graph structure learning module, which makes our model
applicable even without a predefined connectivity structure.

+ We show that our model is competitive to state-of-the-art statistical and dynamical ENSO
forecasting systems, and outperforms them for forecasts of up to six months.

+ We exploit our model’s interpretability, to show how it learns sensible connections that are
consistent with existing theories on ENSO dynamics predictability.



UNIVERSITAT
Overview S

TUBINGEN
of the structure.

/ Target \
\ ONIY /<~

:; MSE(Y, Y)
Aorecast\( \
‘\\ONIY /’ \

Structure
Learner

____ = ——————=

+ Goal: Forecast Oceanic Nifio Index (ONI) for a fixed lead time.
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The formalities.
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G =€), whereeach V; €V, 1 < <N, is a node of a gridded climate dataset.
For each time t = 1.. T, node feature vector Vf € RP of climatic variable.
Adjacency A € {0, L}V*N with (i,j) € £ & Aj = 1.

Snapshot measurement X; = (Vj,..V{) € RVxD

For window size w, concatenate to obtain X = hstack(Xy,, .. Xy, ) € RNV*"P,

+ Target Y = Y}, +n € R, ONI index for lead time h.

Loss £: MSE.

+

+

+

+

+

+
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Graph Neural Networks.

Adjacency Feature
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ICLR 2021 Keynote - "Geometric Deep Learning: The Erlangen Programme of ML" - M Bronstein
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Graph Convolutional Networks.

+

Node embeddings Z; for layer / and node i, set Z° = X.
Next layer: Z/ = o (Az’—lw’) € RVXD1,

+ For continuous A, this is a weighted sum inside the sigmoid.

+

+

Aggregate output of last layer L to obtain graph embedding:
g = Aggregate (ZL, Z,LV) € RP:.

+

Finally, use an MLP to forecast ONI: ¥ = MLP(g).
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Deep Learning = bag of tricks.

+

GCNs are typically shallow, in this case 2 and 3 layers.
Followed by 2 layer MLP.

+ Batch normalization, no dropout.

+

+

Residual connections and jumping knowledge.

+ Aggregation functions: mean, sum.
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A data-driven adjacency.

+ To obtain the adjacency A, use static node representations X € RV

+ X: SST, heat content anomalies, latitude and longitudes.

M; = tanh (al)N(VNV1> S RNXJZ, (1)
M, = tanh (OQXWQ) S RNXJZ, (2)
A = sigmoid (a;M;M]) € {0, 1}V*N, (3)

+ a1, ap hyperparameters controlling the spread of values and confidence in edges.
+ Finally, set all but largest e edge weights to 0 to enforce desired sparsity.

+ Add self-loops to the graph.
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Data

+

SODA reanalysis dataset (1871-1973).
Climate model simulations from CMIP5.

+

+ Augmentation is needed for deep learning.
Test set: GODAS dataset (1984-2017).
Grid resolution 5 degrees, locations in 555 — 60N and 0 — 360WV.

N = 1345 nodes after filtering out terrestrial ones.

+

+

+

+

Features: SST and heat content anomalies, window w = 3 months.
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Results
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Figure: 6 month lead predictions.

+

Outperforms state-of-the-art CNN of for up to 6 lead months
Outperforms the competitive dynamical model SINTEX-F for all lead times.

+

+

Why the decrease in performance for more than six lead months?
Hypothesis: learning connectivity structure makes the model more prone to overfitting.

+
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We can analyze the graph!

+ The authors employ eigenvector centrality to visualize connectivity.

+ But: importance # centrality.
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Most Positive Ollivier Ricci Curvature

+ Top: Eigenvector centrality. Bottom: nodes with top 10% positive edges. 14
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Most Negative Ollivier Ricci Curvature

+ Top: Eigenvector centrality. Bottom: nodes with top 10% negative edges. 5
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Edges Connected to Node with Highest Negative Unnormalized Ollivier Ricci Curvature
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Edges Connected to Node with Highest Eigenvector Centrality
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