Journal Club
May 4, 2021

Jakob Schlör
Universität Tübingen

May 5, 2021
Deep learning for physical processes: incorporating prior scientific knowledge*

Emmanuel de Bézenac1,3, Arthur Pajot1,3 and Patrick Gallinari2

1 Sorbonne Universites, UMR 7606, LIP6, F-75005 Paris, France
2 Sorbonne Université, UMR 7606, LIP6, Paris and Criteo AI Lab, Paris, France
Motivation

Ground truth for the validation of process-based models

Physical Equation-driven Earth and Climate Modelling
- Main tool for quantifying the Earth's state under ongoing anthropogenic forcing
- **Persistent error sources**, e.g., non-explicit description of subgrid-scale processes and insufficient model domain coupling
- Combination of deep process understanding with recently revealed advantages of machine learning

Process-based models and neural networks will be coupled as actively learning and self-validating hybrid models

Earth System Observation Data

Available data pool for extracting specific training environments for neural networks

Earth Data-driven Machine Learning
- Highly specialized agents that uncover hidden patterns and relate geophysical quantities
- General lack of process knowledge leads to fundamental shortcomings, e.g., for predicting non-stationary climate processes
- Training based on model and observation data allows neural networks to accurately predict Earth system processes

Hybrid models will start to outperform traditional models in terms of physical consistency and predictive power

Successive research on explainable and interpretable AI will make hybrid models more physically tractable

Combining the advantages of process-based with machine learning models will drastically improve Earth system and climate projections

Irrgang et al., Will Artificial Intelligence supersede Earth System and Climate Models? (2021)
Question: How to incorporate physical knowledge for designing a NN aimed at forecasting sea surface temperatures?

Results: Improve SST forecasting (6 days) by combining NN with the advection-diffusion equation.

Impact: Proposed hybrid model generalizes to a class of problems for forecasting spatio-temporal data.
Advection-diffusion equation

Advection: transport of substance or quantity by motion of a fluid

Diffusion: Movement of substance or quantity from regions of higher to regions of lower concentration

\[
\frac{\partial I}{\partial t} + (\mathbf{\omega} \cdot \nabla) I = D \nabla^2 I
\]

- \(I(x,t)\): sea surface temperature
- \(\mathbf{\omega} \sim \frac{\Delta x}{\Delta t}\): motion field
- \(D\): diffusion coefficient
Advection-diffusion equation

\[\frac{\partial I}{\partial t} + (\omega \cdot \nabla) I = D \nabla^2 I \]

Global Solution:

\[I(x, t) = \int_{\mathbb{R}^2} k(x - t\omega, x')I_0(x')dx' \]

RBF - kernel

\[k(x, x') = \frac{1}{4\pi Dt}e^{-\frac{1}{4Dt}|x-x'|^2} \]

I(x,t) : sea surface temperature
ω ~ \frac{Δx}{Δt} : motion field
D: diffusion coefficient
Motion estimation

\[\hat{I}_{t+1}(x) = \sum_{x'} k(x - \hat{\omega}(x), x') I_{t}(x') \]

CDNN → Motion Field → Warping Scheme → \(\hat{I}_{t+1} \) → Supervision
Covolution Deconvolution NN (CDNN)

Properties:
- Skip connections
- Batch normalization
- Leaky ReLU

Loss:

\[
L_t = \sum_{x \in \Omega} \rho \left(\hat{I}_{t+1}(x) - I_{t+1}(x) \right) + \lambda_{\text{div}} \left(\nabla \cdot w_t(x) \right)^2 + \lambda_{\text{magn}} \left\| w_t(x) \right\|^2 + \lambda_{\text{grad}} \left\| \nabla w_t(x) \right\|^2
\]

Charbonnier penalty function: \(\rho(x) = (x + \epsilon)^{\frac{1}{\alpha}} \)
Dataset

- Normalized sea surface temperature anomalies
- Daily temperature
- NOAA 6 satellite (with NEMO assimilation)
- Training/Validation data: 2006-2015
- Test data: 2016-2017

Assumption: sub-region contains enough information for forecasting
Results

- 6 day forecasts: \(I_t \rightarrow I_{t+6} \)

- Comparison to:
 - Numerical model based on shallow-water equation
 - Autoregressive CDNN directly on SST prediction
 - ConvLSTM
 - Autoregressive CNN trained as a GAN
Results

Observation

Proposed model

Motion field

Numerical model

ACNN

ConvLSTM
Results

<table>
<thead>
<tr>
<th>Model</th>
<th>Average score (MSE)</th>
<th>Average time (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Numerical model (Béréziat and Herlin 2015)</td>
<td>1.99</td>
<td>4.8</td>
</tr>
<tr>
<td>ConvLSTM (Shi et al 2015)</td>
<td>5.76</td>
<td>0.018</td>
</tr>
<tr>
<td>ACNN</td>
<td>15.84</td>
<td>0.54</td>
</tr>
<tr>
<td>GAN video generation (Mathieu et al 2015)</td>
<td>4.73</td>
<td>0.096</td>
</tr>
<tr>
<td>Proposed model with regularization</td>
<td>1.42</td>
<td>0.040</td>
</tr>
<tr>
<td>Proposed model without regularization</td>
<td>2.01</td>
<td>0.040</td>
</tr>
</tbody>
</table>

- Proposed model performs similarly to the numerical model
- Computational time is strongly decreased in comparison to the numerical model
Results

Forecasting ability seems to be seasonal dependent.
Summary

- Combining physical knowledge and CDNN outperforms purely data-driven NN models.

- Proposed approach reaches comparable performance than numerical model.

- Generalizes to problems which follow advection-diffusion principles.
Shortcomings and improvements

- Uncertainty prediction
- Validating motion field
- Incorporating additional terms not captured by advection-diffusion equation
- Other examples to show generalizability
Take home message

- Read model papers before using a data-driven approach
- Incorporating known equations or principles from physics to a NN
 - Model architecture
 - Loss function
Numerical Model

Dynamics are based on the shallow water equations:

- Derived from depth-integrated Navier-Stokes equation (animation)
- Conservation of mass and momentum
- Group all terms not related to advection into one Lagrangian variable
- Initial conditions derived from data assimilation

Convolutional LSTM

- Convolution operator in the state-to-state and input-to-state transitions
- Used for precipitation nowcasting

Figure 2: Inner structure of ConvLSTM

Shi et al. (2015) Convolutional LSTM network: a machine learning approach for precipitation nowcasting
GAN video generation

- Autoregressive CDNN as a generative model
- Joined training of generative model and discriminative model

Algorithm 1: Training adversarial networks for next frame generation

Set the learning rates ρ_D and ρ_G, and weights $\lambda_{adv}, \lambda_{lp}$.

while not converged do

Update the discriminator D:
Get M data samples $(X, Y) = (X^{(1)}, Y^{(1)}), \ldots, (X^{(M)}, Y^{(M)})$

$$W_D = W_D - \rho_D \sum_{i=1}^{M} \frac{\partial L_{adv}^D(X^{(i)}, Y^{(i)})}{\partial W_D}$$

Update the generator G:
Get M new data samples $(X, Y) = (X^{(1)}, Y^{(1)}), \ldots, (X^{(M)}, Y^{(M)})$

$$W_G = W_G - \rho_G \sum_{i=1}^{M} \left(\lambda_{adv} \frac{\partial L_{adv}^G(X^{(i)}, Y^{(i)})}{\partial W_G} + \lambda_{lp} \frac{\partial L_{lp}(X^{(i)}, Y^{(i)})}{\partial W_G} \right)$$

Mathieu et al. (2015) Deep multi-scale video prediction beyond mean square error