

Collaborative impact of the NAO and atmospheric blocking on European heatwaves, with a focus on the hot summer of 2018 Julia Hellmig

Journal Club
06 April 2021

Environmental Research Letters

LETTER

Collaborative impact of the NAO and atmospheric blocking on European heatwaves, with a focus on the hot summer of 2018

Muyuan Li^{1,2}, Yao Yao^{1,2}, Ian Simmonds³, Dehai Luo^{1,2}, Linhao Zhong^{1,2} and Xiaodan Chen⁴

¹ Key Laboratory of Regional Climate-Environment for Temperate East Asia, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, People's Republic of China

² University of Chinese Academy of Sciences, Beijing, People's Republic of China

³ School of Earth Sciences, The University of Melbourne, Victoria, 3010, Australia

⁴ Department of Atmospheric and Oceanic Sciences, Institute of Atmospheric Sciences, Fudan University, Shanghai 200438, People's Republic of China

NAO and Atmospheric Blocking

- What is the NAO and Atmospheric Blocking?
- What are their interconnections?

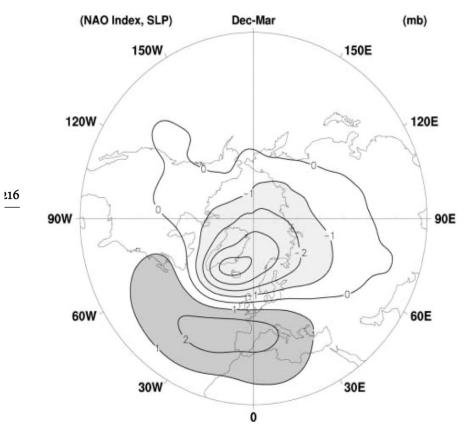
Results

- Summer heatwave 2018
- MSAT anomalies
- Geopotential height anomalies
- > Evolution of the EB
- Wind anomalies

Research Question, Data and Methods

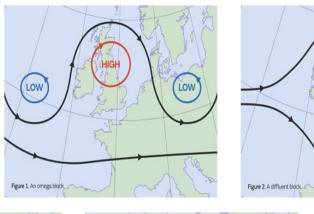
- Research Question
- > Data
- > Methods

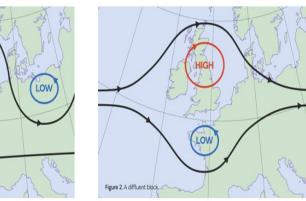
Discussion and Summary


- Conclusion
- My take home message

North Atlantic Oscillation (NAO)

- Pressure difference between the icelandic low and the azores high
- Positive NAO: large difference in pressure
- Negative NAO: small difference in pressure




Stochastic Environmental Research and Risk Assessment, R.J.Greatbatch, 2000, Springer Verlag

Atmospheric Blocking

- Nearly stationary atmospheric fields of high pressure
- Cause the area of the block to have the same kind of weather for a longer period of time
- Blocking events are a main cause for heatwaves in europe

Taken from: https://uip.primavera-h2020.eu/storymaps/atmospheric-blockings

Interplay between Atmospheric Blocking, heatwaves and NAO

- Summer heatwaves over Europe are closely related to blocking events
- NAO+ events favour the occurrence of European blocking (EB) events
- NAO+ related EB events are stronger and more persistent
- NAO+ related EB events cause long lived extreme cold events in winter

NAO and Atmospheric Blocking

- What is the NAO and Atmospheric Blocking?
- What are their interconnections?

Results

- Summer heatwave 2018
- MSAT anomalies
- Geopotential height anomalies
- > Evolution of the EB
- Wind anomalies

Research Question, Data and Methods

- Research Question
- Data
- Methods

Discussion and Summary

- Conclusion
- My take home message

Outline

Research Question

- To what extend was the summer heatwave of 2018 related to atmospheric blocking over Europe?
- Does the NAO+ related atmospheric blocking affect characteristics of summer heatwaves in Europe?

Data

- Daily maximal surface air temperature (MSAT) and daily precipitation
- Between 1979 and 2018, summer, over Europe
- Historical simulations generated from 15 different CMIP6 models

Methods

Blocking:

- detection method of Tibaldi and Molteni
- Blocking event is considered related to an NAO+ event if the lag 0 day of the EB lies within the lifetime of an NAO+ event

NAO index:

 obtained from the National Oceanic and Atmospheric Administration/ Climate Prediction Center

Heatwaves:

- land only, MSATI (MSAT index) anomalies
- A heatwave is defined if the MSATI exceeds the 90th percentile for at least three consecutive days

NAO and Atmospheric Blocking

- What is the NAO and Atmospheric Blocking?
- What are their interconnections

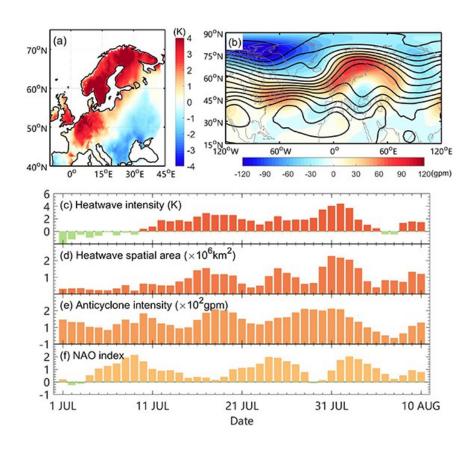
Results

- Summer heatwave 2018
- MSAT anomalies
- Geopotential height anomalies
- > Evolution of the EB
- Wind anomalies

Research Question, Data and Method

- Research Question
- > Data
- Methods

Discussion and Summary


- Conclusion
- My take home message

Analysis of the 2018 summer heatwave over Europe:

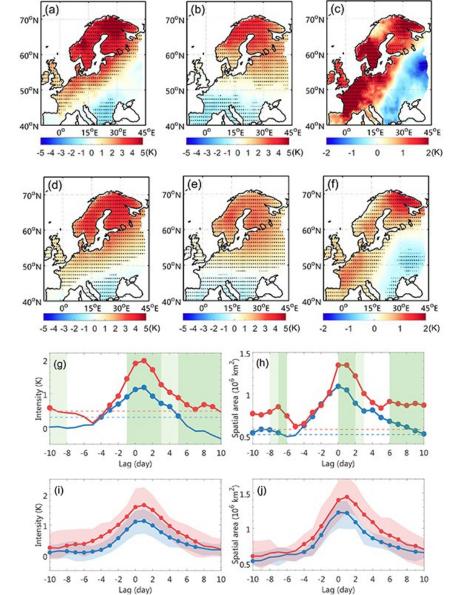
- Two heatwaves
- One blocking event
- Three NAO+ events

Þ

3. Results

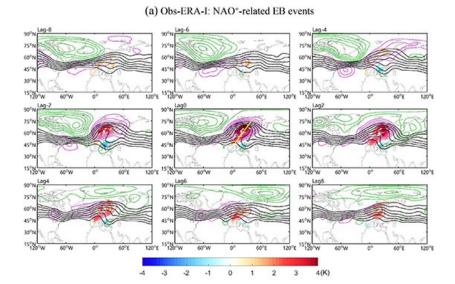
Analysis of EB and NAO+ events from data between 1979 and 2018 (and CMIP 6 model data)

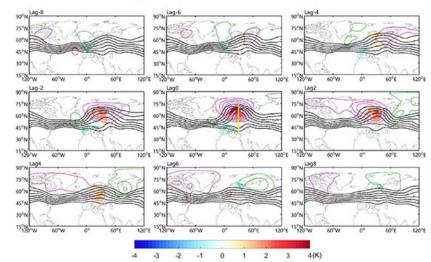
Table 1. Number of NAO⁺-related EB events, NAO⁺-unrelated EB events and NAO⁺ events without EB, and characteristics (number, frequency, average lifetime, average spatial area, and average intensity) of related heatwaves derived from E-OBS 19.0. (These numbers are expressed as events per decade.) The frequency of heatwave refers to the possibility of a heatwave when a NAO⁺/EB event occurs. The comparable numbers for the mean of the CMIP6 historical simulations are presented in parentheses. The periods covered are 1979–2018 and 1980–2010 for E-OBS 19.0. and CMIP6 historical simulations, respectively.


	NAO ⁺ events without EB	NAO ⁺ -unrelated EB events	NAO ⁺ -related EB events
Number of NAO ⁺ /EB events (/decade)	17.00 (18.95)	20.50 (15.46)	8.25 (7.20)
Number of heatwaves (/decade)	2.25 (1.85)	4.75 (4.88)	3.75 (2.86)
Frequency of heatwaves	13.24% (9.76%)	23.17% (31.57%)	45.45% (39.72%)
Average lifetime of heatwaves (days)	4.33 (5.00)	5.00 (5.59)	6.87 (6.90)
Average spatial area of heatwaves (10 ⁶ km ²)	1.77 (2.10)	1.95 (2.30)	1.97 (2.32)
Average intensity of heatwaves (K)	3.04 (2.78)	3.38 (3.01)	3.64 (3.27)

3. Results

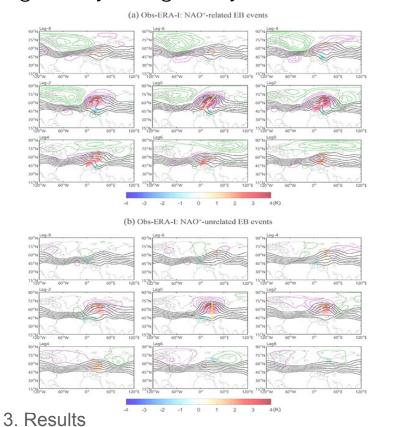
MSAT anomalies on Lag 0 day

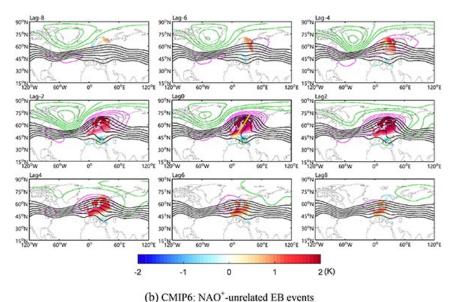

- Spatial distribution and intensity differs between NAO+ related and unrelated EB heatwayes
- NAO+ related EB events cause north-west heatwaves
- NAO+ unrelated EB events cause north-east heatwaves
- NAO+ related EB event heatwaves have higher intensitives and are larger

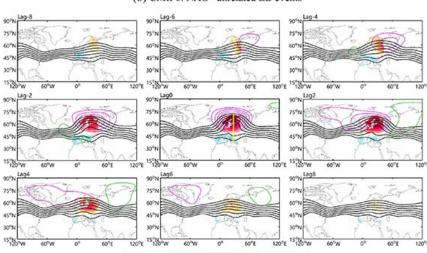


Geopotential height anomalies from lag -8 day to lag 8 day for observed data

- EB tilt to the south west for NAO+ related EB events
- No tilt for NAO+ unrelated EB events

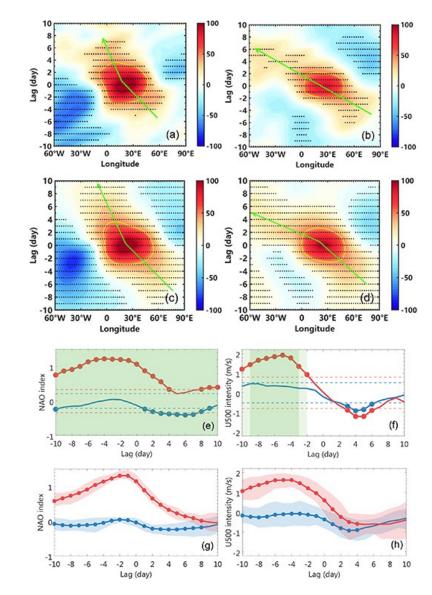




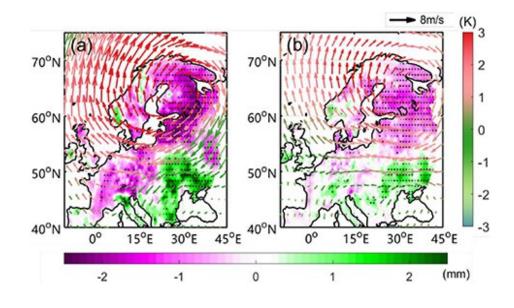


3. Results

Geopotential height anomalies from lag -8 day to lag 8 day for model data



Time-longitude evolution of geopotential height anomalies


- EB event associated with NAO+ event persists longer than NAO+ unrelated EB event
- Travelling speed of NAO+ related EB events is slower than of NAO+ unrelated EB events

Wind and precipitation anomalies at lag 0 day

- Tilted EB events cause southerly winds to the west
- Stronger precipitation anomalies during NAO+ related EB events

17

3. Results

NAO and Atmospheric Blocking

- What is the NAO and Atmospheric Blocking?
- What are their interconnections?

Results

- Summer heatwave 2018
- MSAT anomalies
- Geopotential height anomalies
- > Evolution of the EB
- Wind anomalies

Research Question, Data and Methods

- Research Question
- Data
- Methods

Discussion and Summary

- Conclusion
- My take home message

Outline

Conclusion

- Heatwave of 2018 is associated with a atmospheric blocking event and three NAO+ events
- NAO+ patterns upstream of an atmospheric blocking event have influences on the
 - Shape
 - Intensity
 - Duration of heatwaves

Personal Take Home Message

- Heatwaves are caused by different atmospheric phenomena depending on the spatial location
- Different atmospheric events are all somehow connected to each other and influence each other

4. Conclusion

Literature

Muyuan Li et al 2020 Environ. Res. Lett. 15 114003

R.J.Greatbatch, The North Atlantic Oscillation in Stochastic Environmental Research and Risk Assessment, 2000, Springer Verlag

Tibaldi and Molteni Index

- One dimensional blocks
- Blocking event: More than five contigous meridian lines are blocked for a day and this consists for at least three days
- Z500 = geopotential height

$$GHGS = rac{Z500(arphi_0) - Z500(arphi_S)}{arphi_0 - arphi_S},
onumber \ GHGN = rac{Z500(arphi_N) - Z500(arphi_0)}{arphi_N - arphi_0}.$$

where $\varphi_N = 80^\circ \text{N} + \Delta$, $\varphi_S = 40^\circ \text{N} + \Delta$, and $\varphi_0 = 60^\circ \text{N} + \Delta$, and $\Delta = -5^\circ$, 0° or 5° . If *GHGS* > 0 and *GHGN* < -10 gpm (deg. lat.)⁻¹ for any one of the three values of , blocking is defined to have happened at this longitude.

Model	EB events	NAO ⁺ events	NAO ⁺ - related EB events	NAO ⁺ - unrelated EB events	NAO ⁺ events without EB
ACCESS-CM2	52	80	22	30	60
BCC-CSM2-MR	87	73	27	60	49
BCC-ESM1	60	84	19	41	68
CanESM5	69	75	23	46	55
CESM2	68	82	23	45	61
CESM2-WACCM	61	75	20	41	56
EC-Earth3	68	77	23	45	54
FGOALS-g3	83	75	22	61	55
GEDL-CM4	86	78	26	60	49
IPSL-CM6A-LR	86	79	25	61	56
MIROC6	82	81	26	56	57
MPI-ESM1-2-HR	72	79	20	52	60
MPI-ESM1-2-LR	45	89	14	31	76
MRI-ESM2-0	84	86	28	56	59
NorESM2-MM	51	85	17	34	66
Average number of all the models	70.27	79.87	22.33	47.93	58.73

