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4Challenge with higher dimensionality and effect size
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Toy example

➢ Causal link between Niño 3.4 and British 
Columbia

➢ Test the impact of dimensionality and effect 
size
➢ Dimensionality: Introduce artifical time 

series into the data set
➢ Effect size: Impact of the causal link 

measured by partial correlation

➢ Power of the test: Percent times where the 
test was able to detect true links 
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5Challenge with higher dimensionality and effect size
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Autocorrelation

Autocorrelation
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6Challenge with higher dimensionality and effect size
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Effect size ~ 0.3 at lag = 2 (using correlation)
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Toy example

➢ Causal link between Niño 3.4 and British 
Columbia

➢ Test the impact of dimensionality and effect 
size
➢ Dimensionality: Introduce artifical time 

series into the data set
➢ Effect size: Impact of the causal link 

measured by partial correlation

➢ Power of the test: Percent times where the 
test was able to detect true links 

Test 1

Test 2
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8Challenge with higher dimensionality and effect size
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Full Conditional independence test (FullCI)

➢ Test for conditional independence between X 
and Y

➢ For the link X  Y→
➢ Fit a linear autoregressive model for Y(t) 

dependent on all past variables of Y, i.e., Y(t-
1), Y(t-2), … and X, i.e., X(t-1), X(t-2), …

➢ Estimate which autoregressive coeficien
%ts are significantly different from zero

Test 1

Test 2
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Effect size ~ 0.3 at lag = 2 (using correlation)
Effect size ~ 0.1 at lag = 2 (using FullCI)



  

Be
da

rt
ha

 G
os

w
am

i

10Challenge with higher dimensionality and effect size
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Effect size ~ 0.09 at lag = 2 (using Full CI)
Power = 53% (85% if Z is independent of Niño)

Effect size ~ 0.3 at lag = 2 (using correlation)
Effect size ~ 0.1 at lag = 2 (using FullCI)
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11Challenge with higher dimensionality and effect size
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Effect size ~ 0.09 at lag = 2 (using Full CI)
Power = 53% (85% if Z is independent of Niño)

Effect size ~ 0.3 at lag = 2 (using correlation)
Effect size ~ 0.1 at lag = 2 (using FullCI)

Effect size ~ 0.09 at lag = 2 (using Full CI)
Power = 40%
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12PCMCI: Definitions
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Consider the N-dimensional system (i.e., in our case, a 
system that has been obsrved at N spatial locations)

where each Xj
t evolves in time according to some function 

of the past states of all locations (incl. itself)

potentially nonlinear 
functional dependency

mutually indepdendent 
dynamical noise

causal “parents” of Xj
t

A causal link exists iff

Equivalently, the causal link  is defined as
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PCMCI consists of two steps

➢ PC step:
➢ Identify relevant conditions (i.e. parents) of 

every variable Xj
t , i.e. estimate

➢ MCI step:
➢ Momentary Conditional Independence
➢ Test whether
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PC step

➢ Initialize preliminary parents:

➢ First iteration, p = 0
➢ Conduct unconditional independence tests
➢ Remove Xi

t-τ if from the parents of Xj
t if the 

null hypothesis that Xi
t-τ and Xj

t are 
unconditionally independent cannot be 
rejected at significance level ɑPC

➢ Next iterations, p  p + 1→
➢ Sort parents of Xj

t according to magnitude of 
test statistic (e.g., absolute partial correlation)

➢ Conduct conditional independence tests
where S is is the set of strongest parents

➢ Remove those parents that whose 
conditional independence cannot be rejected
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15PCMCI: MCI step
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MCI step

➢ Use the set of parents identified from the PC 
step

➢ For the link 

➢ Instead of the initial definition of a causal link

➢ Use the more efficient causality condition
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16PCMCI: Toy example
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17PCMCI: Toy example  PC Step→
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18PCMCI: Toy example  MCI Step→
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19PCMCI: Climate example
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PCMCI applied to monthly surface pressure anomalies (1948–2012) from western Pacific (WPAC), central Pacific (CPAC), 
estearn Pacific (EPAC), and tropical Atlantic (ATL)
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Summary

➢ Dimensionality reduces the power of causal 
discovery tests

➢ Authors propose a two-step method PCMCI 
to reliably detect causal links

➢ The PC step iteratively removes 
independent parents from each node in a 
time series graphical model

➢ The MCI step considers the final 
(converged) set of parents from the PC step 
and estimates causal links based on a 
momentary conditional independence test

➢ Results show reliable results in synthetic 
and climate examples
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