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Tübingen, Germany, 72076
bedartha.goswami@uni-tuebingen.de

ABSTRACT
This study compares various models estimating monthly desea-
soned precipitation based on large-scale atmospheric oscillation in-
dices as predictors. The study area selected is the western Mediter-
ranean and 9 climatic indices which are influential in the area are
considered. Regression is performed on the time series of the cli-
matic indices to model (gridded) precipitation time series provided
by the ERA5 monthly precipitation dataset spanning over the past
40 years. The methods used are Multiple Linear Regression (MLR),
Random Forest Regression (RF), M5 Model Tree (M5) and Artifi-
cial Neural Networks (ANN). The focus lies on assessing the mod-
els’ abilities to reproduce the teleconnections. The models are first
tested on the entire study area making predictions with all consid-
ered input variables. In a second part of the study, they are then
further tested using only a selection of input variables and on sea-
sonally separated data. The analysis highlights the conditions un-
der which each model performs best. The results suggest that the
most basic regression method MLR remains a valid option for the
defined task whereas ANN shows a greater potential in modeling
seasonally separated data. 3

1. INTRODUCTION
Analysing precipitation in the Mediterranean is of particular inter-
est as this region has previously been identified as a ‘hot spot’ of
climate change (Diffenbaugh and Giorgi, 2012 [10]). A substantial
change towards higher temperatures and lower precipitation rates
has long been observed and even higher degrees of change are pro-
jected by climate models for the future of the region (Seager et al.,
2014 [25]). Especially the intensification of dry climate conditions
poses large threats, ranging from increases in droughts and arid-
ity to increases in fire weather which afflict ecosystems and a wide
range of sectors including agriculture, forestry, and health (IPCC,
2021 [3]). On the other hand, a “paradoxical” increase in daily pre-
cipitation extremes has also been detected for the region (Alpert,
P. et al., 2002 [2]). The projected threatening impact of climate
change for the Mediterranean motivates the choice of the region
in this study.
The Mediterranean Basin has given name to its type of climate
known as the Mediterranean climate. Midlatitude and tropical at-

mospheric circulation patterns have their impact on its climatic
conditions. Furthermore, this climate is influenced by the com-
plex geomorphology of the area characterized by mountain ridges
around the sea basin and small gulfs resulting in a great spatial vari-
ability. The winter season is primarily characterized by a mild and
wet climate with the highest rainfall, whereas the summer season
is hot and dry. This high precipitation variability across the seasons
leads to a variety of weather conditions that can also turn into ex-
tremes. On one hand, there are dry events which cause vegetation
stress, wildfires and water scarcity that afflicts regions with limited
water resources. On the other hand, there is extreme precipitation
which causes floods and erosion.
Given the high relevance of precipitation in the Mediterranean, a
better understanding of its behaviour is desired. Being able to bet-
ter predict its trend in the near and far future is important for the
development of fields such as water management to ensure water
and food security. Moreover, it is of interest to see how much of the
change is to be attributed to changes in natural climatic oscillations
and how much to the anthropogenic climate change. This requires
climate simulations to accurately reproduce the main mechanisms
controlling precipitation. One of such mechanisms is the connec-
tion to large-scale atmospheric circulation patterns. It is well estab-
lished that said patterns have a major effect on regional hydrocli-
mate in general and on that of the Mediterranean region. Their im-
pact differs both spatially within the region and temporally across
seasons.
The most prominent pattern in relation to the Mediterranean is the
North Atlantic Oscillation (NAO). Its effect on precipitation, espe-
cially during the winter season, has been analysed in many previous
studies.
However, the number of climatic patterns having their influence
on Mediterranean climate goes far beyond that. In alignment with
previous studies on the Mediterranean hydroclimate, the follow-
ing patterns are regarded in this study: NAO, Arctic Oscillation
(AO), Scandinavian Pattern (SCAND), East Atlantic pattern (EA),
East Atlantic/Western Russia pattern (EAWR), Southern Oscilla-
tion index (SOI), Atlantic Multidecadal Oscillation index (AMO),
Mediterranean Oscillation Index (MOI) and the Western Mediter-
ranean Oscillation Index (WeMO).
Previous studies have utilized and compared a variety of regres-
sion methods for applications such as analyses on the teleconnec-
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tions between climatic patterns and precipitation or the prediction
of future precipitation based on climatic indices. These methods
include Multiple Linear Regression (MLR), Autoregressive Inte-
grated Moving Average, Support Vector Machines, Artificial Neu-
ral Networks and Regression Trees such as Random Forests or the
M5 Model Tree.
MLR is the most basic method used in this context. For example
Choubin et al. (2016 [7]) make use of MLR in a comparison with
multilayer perceptrons (MLP) and adaptive neuro fuzzy inference
system models for predicting precipitation in Iran from various cli-
mate signals. They conclude that MLR performs worse than their
implementation of an MLP.
Artificial neural networks (ANN) became popular as self-learning
models that are capable of utilizing highly nonlinear data to make
predictions. They have also been used in recent literature related
to precipitation prediction and have proven to be effective in the
task. Similar to this study, Choubin et al. (2017b [6]) applied ANNs
among other methods to forecast seasonal precipitation time series.
Rezaeian-Zadeh et al. (2012 [21]) compared four different ANN al-
gorithms to predict monthly discharge volume in Iran. Hong et al.
(2020 [13]) did a comparative analysis of inflow prediction through
various algorithms resulting in their MLP implementation to be the
best performing.
Tree regressors come in various implementations such as random
forest regressors (RF) or M5 model trees (M5). These tree-based
models have been implemented in various studies such as Sattari
et al. (2020 [24]) to assess precipitation in Iran, or Ravinesh et
al. (2017 [9]) to forecast drought in Australia, both based on cli-
mate indices as predictor variables. Many of these studies applied
the models on station data and only considered small regions. Fol-
lowing preceding comparative studies in similar applications, we
choose to investigate MLR, RF, M5 and MLP implementations for
comparison in this study.
The objectives of this study are (1) to assess the comparative po-
tential of a selection of models to estimate deseasoned precipita-
tion in the western Mediterranean based on multiple large-scale
climate signals and (2) to find the conditions under which they are
optimally applied by tuning their hyperparameters and by explor-
ing different applications of processing the training data. By do-
ing so, the study intends to give a better insight into which meth-
ods and materials are best used for studies aimed at understanding
and quantifying the relationships between precipitation trends and
large-scale atmospheric variability and studies in the field of re-
gional hydroclimate analysis.
This study is structured as follows: section 2 describes the study
area and climatic data and the sources used; section 3 introduces
the tools, models and evaluation methods used to perform the re-
gression task; section 4 presents the applications used to test the
methods in detail and comments on the results; section 5 summa-
rizes and discusses the results and potential flaws.

2. STUDY AREA AND DATA
2.1 Climatic Indices
The data used for the regression models are various climate os-
cillation indices that describe pressure differences (with exception
to AMO). In most cases they are calculated by subtracting the at-
mospheric pressure at one location from that at another. The time
series data of the indices are provided in monthly temporal reso-
lution, otherwise the monthly mean is taken. In the following, we
introduce the indices that we presume to have a relevant impact on
Mediterranean rainfall. The choices are based on previous studies

on precipitation teleconnection patterns in the Mediterranean, such
as that of Krichak et al. (2014 [16]), who studied the relationship
between five teleconnection patterns and extreme precipitation in
the area defined as ”Euro-Mediterranean region” and Mathbout et
al. (2019 [18]), who studied the relationship of eight such patterns
and daily rainfall concentration over the Mediterranean.
The following indices are provided by the NOAA Climate Predic-
tion Center:

- The Arctic Oscillation (AO; Thompson & Wallace, 1998 [27])
index tracks differences between sea-level pressure (SLP)
anomalies in the arctic and anomalies in the mid-latitudes. The
AO has its influence on mid-latitude climate by controlling the
jet stream which can carry cold arctic air southwards. It is cor-
related with the NAO but has a different impact on Mediter-
ranean precipitation (Krichak et al., 2014 [16]).

- The Scandinavian pattern (SCAND) index measures the pres-
sure difference between northern and southern Europe. More
precisely, the index provided by NOAA CPC has its northern
action centre over Scandinavia and the southern centre span-
ning from western/southern Europe to eastern Russia/western
Mongolia (Barnston and Livezey, 1987 [4]). A positive state
of SCAND can bring above average precipitation in southern
Europe.

- The East Atlantic (EA; Barnston and Livezey, 1987 [4]) pattern
has its centres near 55°N, 20-35°W and 25-35°N, 0-10°W. It
thus can be described as a southeastwards shifted NAO. Its key
difference lies in the southern centre having a subtropical link,
making it a unique index. It has an influence on precipitation
in countries in the Mediterranean, such as Spain, as found by
Rodriguez-Puebla et al. (1998 [22]).

- The East Atlantic/Western Russia (EAWR; Barnston and
Livezey, 1987 [4]) pattern consists of four geopotential height
anomaly centres over Europe, northern China, the central
North Atlantic and northern Caspian sea. Krichak (2005 [15])
found its correlations with precipitation to be most significant
over the eastern Atlantic and the south-eastern Mediterranean.

- The Southern Oscillation Index (SOI; Ropelewski and Jones,
1987 [23]) measures pressure differences between the western
and eastern tropical Pacific by comparing the locations Tahiti
and Darwin. In this study, we use the standardized data pro-
vided by NOAA (sometimes denoted soi std).

- Atlantic Multidecadal Oscillation (AMO; Enfield et al., 2001
[11]) is the only index used in this study based on sea sur-
face temperature anomalies. It has been included to provide
an index with multidecadal periodicity and due to its effect
on precipitation in the northern hemisphere, including Europe.
We use the unsmoothed variant provided by the NOAA (some-
times denoted amo us).

The remaining indices are provided by the Climatic Research Unit,
University of East Anglia (CRU) unless stated differently:

- The North Atlantic Oscillation (NAO) is one of the most
prominent modes influencing Mediterranean precipitation. It
shows particularly interesting effects on European precipita-
tion during winter. It is defined as the pressure difference be-
tween the Icelandic Low and the Azores High. The differ-
ences between these two points control the strength and direc-
tion of westerly winds which bring air moisture to the Euro-
pean region resulting in precipitation, especially along western
coasts. The index provided by the CRU uses data from Gibral-
tar and Southwest Iceland (Reykjavik) calculated after Jones et
al. (1997 [14]).
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- The Mediterranean Oscillation Index (MOI, Conte et al., 1989
[8]) represents an atmospheric circulation more local to the
Mediterranean. Out of the two definitions existing for this in-
dex, the one derived from the SLP differences between Algiers
and Cairo is chosen in this study.

- Another circulation pattern with great influence in the region
is the Western Mediterranean Oscillation (WeMO Martin-Vide
and Lopez-Bustins, 2006 [17]). It is an index that has been
proposed relatively recently with the purpose of being a more
local teleconnection for the Mediterranean region in contrast
to the NAO. It does so by comparing the pressure at Padua in
northern Italy with that at San Fernando in southwestern Spain.
It is provided by the Climatology Group of the University of
Barcelona.

2.2 Precipitation data
Monthly precipitation is the target variable for the regression mod-
els. We use the total precipitation variable provided in the ERA5
dataset of monthly averaged data on single levels from 1979 to
present (Hersbach, H. et al., 2019 [12]). The dataset has a spatial
grid resolution of 0.25◦ × 0.25◦ (latitude× longitude) and pro-
vides a time series of monthly averaged daily precipitation for each
grid point. The study area covers the latitudes from 35°N to 47°N
and longitudes from 10°W to 30°E. We only focus on the western
Mediterranean as the climatic conditions over the whole Mediter-
ranean region are vastly different and considering them all would
go beyond the scope of this study. The unit of the dataset is me-
tres of water depth. Every time series is deseasoned using moving
averages (only trend + residuals are used). To get a picture of the di-
mensions of the study area and the spatial distribution of the rainfall
features, we provide a map displaying the mean precipitation over
the past 40 years in the supplementary section (see fig. 11).
In order to better differentiate between regional differences within
the Mediterranean region, 6 smaller regions of dimensions 2◦ × 2◦

with unique climatic conditions were selected. The selection of the
regions is based on the overall mean precipitation as well as the cor-
relation strength of the indices with precipitation at that location.
A map that highlights the climatic index with the highest correla-
tion at each grid point is shown in the appendix (see fig. 12). Five
indices, namely NAO, SCAND, WeMO, AO and EA have large
regions, in which they are the most dominant (indices with very
small areas of influence are not shown). The selections are made
such that each of the five dominant indices in the Mediterranean re-
gion has an associated small region. The regions also have distinct
precipitation characteristics regarding the mean taken over a times-
pan of 35 years (length of the test set; see fig. 11) which are calcu-
lated from the ERA5 dataset for documentation in supplementary
table 8. Northern Algeria and Eastern Spain experience relatively
little precipitation of less than 2mm/day while the Balkans region
has rather high precipitation of more than 3mm/day and Southern
France is in between both.

3. METHODS
This section provides an overview of the methods and regression
models used for the comparison. When the models are applied on a
map, they are trained and evaluated on the single time series at each
grid point separately, unless stated differently. The climatic indices
are the input variables and the precipitation at the grid point is the
target variable.

3.1 Spearman’s Rank correlation
The Spearman’s rank correlation coefficient ρ is used here to cal-
culate the correlations between the time series of climatic indices
and time series of precipitation. It is employed to rank the indices
at each grid point by their significance at that location. Instead of
calculating the correlation on absolute values, it ranks the data and
calculates the Pearson correlation on the rank values. This enables
it to detect nonlinear relationships which are of interest when em-
ploying nonlinear regression models.

3.2 Multiple Linear Regression
Multiple Linear Regression (MLR, labelled LR in the graphics and
tables) is a common statistical method that uses multiple input vari-
ables (X1,X2, . . . ,Xn) to predict a variable Y . The MLR equa-
tion for T observations is defined as follows:

yt = a+ b1xt1 + b2xt2 + . . . + bnxtn

Where yt is the tth variable that is to be predicted using n indepen-
dent variables x, bn denotes the coefficients that control how much
each independent variable x contributes to the predicted variable
and a is the intercept of the regression line and the Y-axis. The vec-
tor bn is the parameter that is to be estimated to fit the regression.
In this study, the predictions of MLR serve as a baseline that will
be compared to the other regression models.

3.3 Random Forest
Random Forests (RF) were introduced by Breiman in 2001 [5]. RF
is a supervised learning method that makes use of ensemble learn-
ing to perform classification or, in this case, regression. Since single
decision trees tend to overfit when grown too deep, it is preferable
to use ensembles (forests) of decision trees to average their predic-
tions, resulting in a performance boost for the final model. For each
tree in the forest, a training subset is chosen out of the training set
using the bagging technique. This technique selects random sam-
ples with replacement out of the training set (meaning that a sample
taken for a training subset can still be used for other training sub-
sets). An individual decision tree is grown with each subset. This
is repeated until a predefined number of trees are grown. The final
predictions of RF are made by taking the average prediction of all
its trees. The RF provided by scikit-learn allows us to adjust the
number of estimators, i.e., the number of trees in the forest.

3.4 M5
The M5 Model Tree was introduced by Quinlan (1992, [20]). It
is a decision tree learner aimed at predicting continuous numeri-
cal values by fitting linear regression functions at its leaf nodes. In
the first construction stage, it is built like a decision tree using the
divide-and-conquer method and then pruned in the second stage.
During the building stage, the training set is split into subsets based
on a splitting criterion. This creates two new nodes that can either
be split into more subsets using the same procedure or end up as
leaf nodes. This process is repeated recursively until termination
when only leaf nodes remain at the end of the branches. The used
splitting criterion is the standard deviation reduction (SDR) which
uses the standard deviation as an error measure. During the building
process, SDR calculates the standard deviation S(T ) of the value
subset T in the currently processed node and subtracts the stan-
dard deviation of each possible split c ∈ X executed on that subset
S(T,X). The SDR calculated as follows:

SDR(T,X) = S(T )− S(T,X)
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where
S(T,X) =

∑
c∈X

P (c)S(c)

The split that results in the largest SDR (i.e., the largest expected
error reduction) is applied with the purpose of ultimately reducing
the prediction error at the leaf nodes. If a subset contains too few
values, the building process terminates at that branch and the node
is declared a leaf/terminal node. In the second stage, the branches
that do not contribute much to the overall reduction of the predic-
tion error are pruned (i.e., replaced by a leaf node). Finally, linear
regression is applied on the values of the leaf nodes and smooth-
ing is applied to smooth out the sharp discontinuities between the
linear equations of neighbouring nodes.

3.5 ANN/MLP
Multilayer Perceptrons (MLP) are a common class of artificial neu-
ral networks (ANN). They consist of at least 3 layers of nodes, the
first one being the input layer, the middle ones being at least one
hidden layer and the last one being the output layer. The layers con-
sist of nodes and are connected by joints with trainable weights.
MLPs are feedforward networks, meaning that the nodes of each
layer receive inputs from only the previous layer. The networks are
trained using backpropagation, where the weights of the joints be-
tween the nodes are repeatedly adjusted to reduce the mean squared
error of the output vector generated by the network (i.e., the pre-
dicted precipitation) as compared to the actual values (the observed
precipitation).
There are several hyperparameters that can be adjusted to find an
optimal model. We consider different numbers of layers and nodes
as well as different learning rates and batch sizes. Regarding the
network shape, we will consistently use a densely connected MLP
shape with equally sized hidden layers, each using the Rectified
Linear Unit (ReLU) as nonlinear activation function. During train-
ing, early stopping regularization is used to prevent overfitting. Its
implementation in this study monitors the models’ loss on a valida-
tion set after each training epoch and stops training after there has
been no improvement in the loss for a previously defined number of
epochs (called patience). The search for the optimal hyperparame-
ters is part of the results section. We test two implementations of
MLPs that process the training data in different ways. The first im-
plementation (labelled NN1) follows the same procedure as the pre-
viously presented regression methods, where one MLP is trained on
each time series on the respective grid point, consequently making
estimations on one precipitation value at a time. The second im-
plementation (labelled NN2) exploits the ANNs’ ability to predict
higher dimensional target values. This alternative implementation
uses just one MLP to predict precipitation for an entire region at
once. The idea here is to see whether the model can learn the cli-
matic characteristics of entire regions and identify the distribution
patterns of their precipitation and yield overall better results. How-
ever, this comes with the trade-off of needing to predict a target
vector of increased size (depending on the chosen extract of the
map). The increased target vector length itself poses a bottleneck
which is the area size that the model can predict at once. The entire
selected study area consists of 23.520 grid points which would be
a too long target vector to predict from the relatively little given
data. This implementation also brings the advantage of a reduction
of the high computational cost of training a new MLP for every
single time series. To implement this concept, the target vector at
a given time contains every target data point in the selected region.
A single target vector Yt of one month t is created by flattening
the 2-dimensional spatial data of a selected area of the map Mt

with dimensionsMlat×Mlon into a 1-dimensional vector of length
|Yt| = |Mlat| ∗ |Mlon|.
Each approach will have its individual ANN with unique parame-
ters that have to be optimized.

3.6 Model evaluation criteria
The models’ performances will primarily be evaluated using the
coefficient of determination, denoted as the r2 score. It measures
the goodness of fit, that is, the ability of regression methods to ap-
proximate the observed data. The score ranges from 0 to 1 where
a score of 1 would indicate a perfect fit. It indicates the proportion
(percentage) of the variance of the target data that can be explained
by the predictor variables of the model. r2 is calculated as:

r2 = 1–(RSS/TSS)

where RSS is the sum of squares of residuals (i.e., the squared
differences of the predicted values and the observed values) and
TSS is the total sum of squares (i.e., the squared differences
between the observed values the and their mean).

3.7 Schematic overview
An overview of the data pipeline and model implementations is
given in figure 1.

3.8 Tools used
The following libraries were used for the regression methods:
scikit-learn for the LR and RF methods [19], a publicly available
implementation of M5 [26], and TensorFlow for the implementa-
tion of the neural networks [1].

3.9 GitHub code repository
The code of the project is available at the github reposi-
tory at https://github.com/Staubsaugerbeutel/BA-Git/
tree/main/code

4. APPLICATION & RESULTS
The results section is structured as follows: in part 4.1, a generic
use case is described that is created to compare all models under
identical conditions, followed by the hyperparameter searches for
each of the models which are then applied to the use case. In part
4.2 the models are first tested using less predictors and then in a
seasonal approach.
The shown boxplots are intended to better visualize the perfor-
mance of the models when evaluated on an entire map. They show
the distribution of r2 scores across all the grid points of a map. The
green triangle indicates the mean performance of all its grid points
and the orange line indicates the median.

4.1 Part 1: Application on a universal use case
In this section, the objective as defined in (1), to assess the selected
models to estimate precipitation based on large-scale climate sig-
nals, is pursued. A generic use case is designed to compare the
models under equal conditions. First, LR is run on this use case
and its results serve as baseline. Then the optimal hyperparameters
for the other regression models are determined and applied to this
setup and later compared.
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Fig. 1. Schematic overview of the project.

4.1.1 Use Case 1. Here we define the use case data, which is in-
tended to be most universal for the Mediterranean region. For these
tests, all 9 indices chosen as predictors are included in the input
data. Furthermore, the whole geographic study area is being con-
sidered, i.e., the operations are performed on the time series on ev-
ery grid point of the precipitation dataset.
A train-validation-test split is applied on all timeseries of the input
and target data. First, the test set containing the last five years is
split off the time series which corresponds to 1/8th of the entire
timespan. The test set spans the 5 years 2014-07 to 2019-06 while
the remaining data spans from 1979-07 to 2014-06. This tempo-
rally separate test set is created to be able to judge how well the
model generalizes “truly new” values. It is also an identical test set
for all models, as opposed to the randomly shuffled validation set
which is described in the following. Additionally, a validation split
is created which picks samples at random times from the remain-
ing data, generating a split of 20%. Table 1 gives an overview of
the dimensions of the data for this test run.
The models are run using 5-fold crossvalidation, maintaining the

validation split proportion of 20%. Using cross validation comes at
a slight sacrifice of having to fit a model 5 times but with the gain of
using all data points for training and of averaging the results of dif-
ferent validation sets each time, leading to more robust evaluation
results.

Table 1. Input and target data
Input data

(predictors×months)
Target data

(lat× lon×months)

Training set 9× 336 49× 161× 336

Validation set 9× 84 49× 161× 84

Test set 9× 60 49× 161× 60
Train-Test-Validation data split dimensions for input and target data.

4.1.2 Creating the MLR baseline. MLR needs no parameter tun-
ing and is directly applied on time series at every grid point. The
first row of fig. 6 visualizes the r2 score of the MLR algorithm at
each grid point of the validation and test set. The visualized scores
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are the means taken over the 5 cross validation folds. A compari-
son with the mean precipitation in fig. 11 hints that the regression
works particularly well in regions with higher precipitation such as
the western coast of the Balkans or the western half of the Italian
Peninsula. The results are further discussed in the comparison in
section 4.1.8.

4.1.3 Finding optimal parameters for the remaining models. In
the following, the parameter searches for the other regression meth-
ods are shown. Because executing the algorithms multiple times
with different parameters and on the entire map is computationally
expensive and would take too long on the entire map, the parame-
ter search is executed on the 6 regions specified in section 2.2. The
multiple regions are also chosen to prevent a choice of parameters
that is biased to the climatic conditions of just one region.

4.1.4 RF. The parameter of interest for Random Forests is the
number of estimators or trees in the forest. The range of estimators
that was tested for the parameter search is

nestimators ∈ {5, 10, 50, 100, 500}

The validation set results of the search in the 6 regions are dis-
played in the boxplot charts in fig. 2. The number of estimators in-

Fig. 2. RF parameter search for nestimators at each location. A higher
number of estimators (trees in the forest) generally brings better perfor-
mance stagnating at more than 50 estimators.

creases with each boxplot along the x-axis. It can be observed that
an increase of the number of estimators also leads to an increase
in performance. In better performing regions such as Balkans/AO,
the improvement by adding more estimators starts to stagnate for
more than 50 trees. On the other hand, in less well performing re-
gions such as Eastern Spain/WeMO, increasing the number of es-
timators to over 50 still shows a relative increase. A drawback of
having more trees is the increase of fit time per time series. On the
tested system, the fit time increases by a factor of more than 10
for a model with 100 trees compared to a model with only 5 trees.

Judging from the result of the parameter search in harder to pre-
dict regions such as Spain, we choose 100 estimators to perform
the model on the entire map for later comparison with the other
models.

4.1.5 M5. The parameter searched for in the case of M5 is its
smoothing constant k. We iterate over the following smoothing
constants:

k ∈ {5, 10, 50, 100, 500, 1000}

Increasing the parameter generally leads to better performance

Fig. 3. M5 parameter search for best smoothing constant at each location.
Smoothing constants beyond 100 do not bring much improvement.

of the model up to a certain point (see fig. 3). With k increasing
from 100 to 500, not much improvement is seen anymore. Since
increasing the parameter does not increase the fit time, we choose
a smoothing constant of k = 500 for best performance in regions
such as Southern France, where there is still a marginal improve-
ment visible.

4.1.6 NN1. Since MLPs are the most computationally expensive
compared to the other models, grid search and manual parameter
search over a wider range of parameters was first performed on just
a few single time series at chosen locations to get a rough picture
of the space of parameters that works well. Parameters in the fol-
lowing space were tested:

- layers: l ∈ [1, 20]

- nodes: n ∈ [9, 2000]

- learning rate: lr ∈ [0.001, 0.00003]

- batch size: bs ∈ [8, 128]

Based on the results of the grid search, a set of 7 parameters is cho-
sen to be compared on the extracts as demonstrated in the previous
2 methods. The parameter sets are shown in table 2. The parame-
ters are chosen so that the shape of the model changes from long
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Table 2. Selected parameter sets for NN1
Nodes

per layer
Layers

Total
parameters

Fit time (s)
multiple of
LR fit times

1000 7 7,018,001 11.5 7187.5
500 7 1,759,001 5.5 3437.5
500 8 2,009,501 5.9 3687.5
500 10 2,510,501 9.3 5812.5
100 10 102,101 1.3 812.5
50 13 33,701 1.5 937.5
25 15 10,026 1.5 937.5

Nodes per hidden layer and fit times per time series. The model was trained on
an Intel i7 CPU. ”Multiple of LR fit times” are relative to the duration of an LR
fit of 0.0016s.

(many layers, few nodes) to wide (many nodes, less layers). Mod-
els with parameters lower than the shown ones mostly turned out
not to be working at all. The fit parameters used are a learning rate
of lr = 0.0003 and a batch size of bs = 16. Each model was
trained until early stopping, using a patience of 20. The models
displayed in the boxplots in fig. 4 increase in width and decrease in
length from left to right. The models are labelled according to their
number of layers and nodes. A peak is reached for the model with

Fig. 4. NN1 hyperparameter search for 7 parameter sets of different layer
(l) and node (n) combinations. The model with 500n and 10l peaks at most
of the locations regarding its mean taken across the entire location.

500 nodes and 10 layers which exhibits the best performance on
the validation split across almost all locations. From there on, the
number of layers is further decreased while maintaining 500 nodes.
This decrease is reflected in a decrease in the mean performance.
The only exception to this decrease are the maximum reached
performances of 500n7l at Balkans/AO and 500n8l at Southern
France/SCAND which reach higher than those of 500n10l, while

their mean still sees a decrease. Doubling the number of nodes to
1000 for the model with 7 layers (seen as the right most boxplot
in the figures) leads to an increase in performance that reaches up
to means near the 500n10l model for some locations but is still
worse than its 500n10l counterpart in Southern France/NAO, East-
ern Spain/WeMO and Balkans/AO on the validation set. Interest-
ingly, the smallest two models are the only ones that are able to
explain some variance of the driest, and hardest to predict region of
Northern Algeria, albeit with scores in very poor ranges.
For comparison with the other methods, we chose the MLP with
n = 500 nodes and l = 10 layers as it provides the best results.
Unlike the other models, the NN1 method is not cross validated on
the entire study area and training is only run once per time series
due to it being too computationally expensive at this size.

4.1.7 NN2. Besides the MLP implementation presented in the
previous section, we provide an alternative implementation, which
uses just one MLP to predict precipitation of all grid points of an
entire region at once. Similar to the parameter search in the NN1
section, a set of parameter combinations is chosen from a wider
grid search and then tested on all the regions to be compared with
one another. The parameter sets and their approximate fit times (de-
pendent on the system) are shown in table 3 and their performances
in fig. 5. A batch size of bs = 16 and a learning rate of lr = 0.0003
is used for all training procedures. Each model was trained until
early stopping, using a patience of 20.

Table 3. Selected parameter sets for NN2
Nodes

per layer
Layers

Total
parameters

Fit time (s)
multiple of
LR fit times

2000 13 52,048,001 3.5 2187.5
1000 15 15,026,001 1.5 937.5
1000 13 13,024,001 0.9 562.5
1000 10 10,021,001 0.7 437.5
500 13 3,262,001 0.4 250
500 10 2,510,501 0.2 125

Nodes per hidden layer and fit times per time series. The fit times are calculated
by executing the model on a 9 × 9 grid and dividing the total fit time by the
number of time series included in that grid (81). The model was trained on an
Intel i7 CPU. ”Multiple of LR fit times” are relative to the duration of an LR fit
of 0.0016s.

As derived from the boxplots in fig. 5, the best predictions are
mostly made by the model with 10 layers and 1000 nodes and the
model with 13 layers and 1000 nodes. An exception to this being
the parameter search at Southern France/SCAND, where this pat-
tern is inverted.
For comparison with the other methods, we chose the relatively
large MLP with 1000 nodes and 13 layers. To run the model on
the entire study area, it is subdivided into regions with dimensions
2◦ × 2◦, resulting in a total of 113 regions (excluding the maritime
ones) and then one model is applied to each region. Thanks to the
much shorter fit times than NN1, cross validation can be applied
here too.

4.1.8 Comparison of the models’ performance on the universal
use case. After having optimized the hyperparameters for each
model, these are applied on the entire study area to be compared
with one another. The different models’ performances on the time
series at each grid point of the landmass are displayed for the vali-
dation and test sets separately on the maps in fig. 6. boxplots which
describe the distribution of scores across the grid points on the
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Fig. 5. NN2 parameter search for 6 parameter sets of different layer (l)
and node (n) combinations. Larger MLP architectures are needed for NN2
than for NN1. The models using 10l and 13l, each with 1000n are often
best performing.

shown maps are also given in figures 7 and 8. Additionally, ex-
act values and further measures such as fit time per time series are
shown in tables 4 and 5. Since we are only interested in the fit times
relative to the baseline rather than the absolute duration which de-
pends on the system they are being run on, the duration relative to
the baseline (0.0016s) is also provided. All the fit times have been
calculated on the same system using only the Intel i7 CPU and not
using a GPU for the Neural Networks, which can significantly de-
crease their fit times.
First, the validation set is looked at. The overall mean r2 scores
across the entire map are very low at about 0.15 for LR and M5, 0.1
for RF, 0.14 for NN1 and 0.13 for NN2. In other words, on aver-
age, the models are only able to explain about 15% of the precipita-
tion variation using the 9 atmospheric oscillation indices as predic-
tors. The low means of r2 scores are due to the models commonly
failing to estimate precipitation in Northern Algeria, the Southern
and Eastern regions of Italy and the Balkans. When comparing this
distribution with the map in fig. 12, it can be seen that these re-
gions are mostly dominated by the EA pattern. A pattern can be
observed that the regions often lie east of mountain ranges, where
atmospheric oscillations controlling the westerlies (such as NAO
or AO) have little influence. Predictions here could be improved
by including other atmospheric oscillation indices not considered
in this study. Further comparing with the maps in figures 11 and
12, it can be derived that the models work best in regions primarily
influenced by the NAO and AO, independently of their precipita-
tion amounts. For example, the models perform relatively well in
regions of middle- and western Spain or the western half of the Ital-
ian Peninsula, which are primarily influenced by the NAO, while
at the same time experiencing comparably low precipitation. The
models also work relatively well in regions affected by the WeMO
such as western France, parts of western Italy and the Balkans. Al-

though, this does not hold up for dry regions such as eastern Spain.
Comparing the models themselves on the validation sets, we see
that only M5 manages to perform as well as the MLR baseline.
The two models perform nearly identical in the entire region. The
similarity is also confirmed by the boxplots. The similarity may
be due to M5 approximating a linear regression with the multiple
single linear regressions at its leaf nodes. The two models reach
performances of r2 scores above 0.24 in 25% of the regions and
reach maximum scores of around 0.41. The spatial distribution of
the performance of the RF models is similar to that of the latter
two models. Yet, the model has an overall worse performance with
a mean of only 0.10 and the model only having r2 scores of less
than 0.2 for 75% of the regions. The distribution of the scores
is more contrasted, with the model reaching even lower scores in
the difficult-to-predict regions, but performing very well in easier-
to-predict regions and partly even reaching slightly higher scores
reaching a maximum r2 score of 0.45. Continuing with the MLP
models, the performance of the tested NN1 MLP shows the nois-
iest results. This is due to the saving of resources in the training
by skipping the cross validation, which can lead to results being
shown of models that were poorly trained or that were tested on
only a single randomly generated validation set with nonrepresen-
tative values. For this model, the 75th percentile is located at about
0.23 which only comes close to that of LR and M5. Nevertheless,
the upper 25% reach to much higher values with the 99th percentile
being located at 0.45 and the maximum at 0.64. These values must
also be taken with caution as they could just be outliers created
under the circumstances of not being cross-validated as described
above. NN2 also shows slightly worse performance than LR and
M5, but does not fail to match the performance of NN1, only hav-
ing a slightly worse mean performance of 0.13 compared to 0.14 of
NN1.
When inspecting the predictions on the test set, each of the mod-
els perform overall worse than on the validation set which is to be
expected (see fig. 8). The relative performances remain similar but
NN1 and NN2 perform relatively worse and are only as good as RF
(while they were only slightly worse than LR on the validation set).
The spatial distribution of each of the models’ prediction skill on
the test set also differs from that on the validation set (comparing
right and left column of the maps in fig. 6). For example, most of
the models perform weakly on the coast of eastern Spain in the val-
idation set but perform better in the test set. Conversely, the models
perform better in northern Italy on the validation set than on the
test set. This is due to the climate of the last 5 years being differ-
ent from that on the 35 preceding ones, where the random samples
were taken from for the validation set. While it is to be expected
that the predictions themselves on the test set are inherently differ-
ent, their quality should not vary as observed. These observations
reveal that with the rapidly changing climate, the models are not al-
ways able to maintain their performance, making their predictions
on most recent climate unreliable.
Regarding the models, M5 and LR turn out to perform nearly iden-
tical. As opposed to the validation set performances, where the RF’s
results had a similar spatial distribution as LR, there are some minor
differences when comparing them on the test set. These differences
are predominantly visible as a lack in performance of RF in loca-
tions such as North-eastern Spain or Southern France, where other
models do not fail. Still, in the regions along the border between
Spain and France (where the Pyrenees Mountains are) or in the
Gibraltar region, RF seems to achieve better accuracy on a larger
surface than the other regression models.
When comparing the fit times, LR fits a time series nearly instantly
within only 0.0016 seconds. RF and M5 already need 100 and 131
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Table 4. r2 scores of each model on the validation set. (q denotes the quantiles; as seen in
the boxplots).

Model mean q0.25 median q0.75 q0.99 max fit times (s)
Multiple of
LR fit times

LR 0.146 0.052 0.125 0.242 0.362 0.414 0.0016 1
RF 0.104 0 0.067 0.194 0.344 0.445 0.16 100
M5 0.149 0.05 0.126 0.246 0.373 0.419 0.21 131.25
NN1 0.141 0.037 0.115 0.225 0.452 0.635 9.3 5812.5
NN2 0.132 0.035 0.101 0.222 0.365 0.438 0.248 155

Table 5. See table 4
Model mean q0.25 median q0.75 q0.99 max
LR 0.103 0.033 0.096 0.161 0.305 0.414
RF 0.074 0 0.052 0.122 0.295 0.395
M5 0.105 0.036 0.096 0.162 0.311 0.413
NN1 0.074 0 0.052 0.121 0.322 0.489
NN2 0.077 0.02 0.057 0.116 0.287 0.416

times longer than LR on the same time series. The calculation time
of 9.3s of the MLP chosen for NN1 takes 5812 times as long as LR.
The potential solution to this could be the NN2 approach that needs
fit times of only 0.25s (equivalent to 155 LR fit times) which are in
the same range as RF and M5. It has to be noted for the MLP ap-
proaches, batch size has a significant impact on training duration.
Batch sizes of bs = 16 have been chosen for the shown fit times.
Choosing larger batch sizes could further decrease the fit time but
could potentially affect its accuracy.
Overall, the results show that for the use case defined in section
4.1.1, most of the models struggle to surpass the MLR baseline.
Only the M5 model is on-par with MLR when it comes to appli-
cability on the entire region. With fit times that are more than 100
times as long, it is not worth using M5 over MLR. Due to the per-
formances being averaged on the entire study area, the differences
are marginal and mean r2 performances are poor, making compari-
son difficult. The fact that the performance differs spatially between
the validation and test set and also between different models on the
test set, further complicates drawing conclusions as to which model
generally works best.

4.2 Part 2: Specific use cases
In the previous results, LR has hardly been surpassed by the other
regression models despite their promising capabilities. Moreover,
r2 scores in the range of 0.2 to 0.4 are generally considered very
low. The cause of this can simply be that the teleconnection re-
lationships that are to be described are naturally not particularly
strong. It further may be due to the occurrence of rain being greatly
dependent on the season, while the indices oscillating indepen-
dently of the season, which creates hard to predict relationships.
Another factor that influences the performance can be the number
of variables chosen to train a model. Some models may require less
predictors to create outputs with similar accuracy or may even be
negatively influenced by too many predictors.
In the following we purse the second objective of the study, namely,
if more information can be extracted from the data under scenarios
adapted to the aforementioned potential flaws. The results on the
different scenarios may be of interest for different types of research
applications, depending on their aim. These could be applications
analysing teleconnections of only single climate indices, applica-
tions that aim at best predicting precipitation, independently of the
input variables or applications that aim at analysing precipitation in

only a single season. The following two sections are an analysis on
how different models perform under different conditions in order
to determine which models are best applied for different use cases.

4.2.1 Using the best correlating indices at each location. Differ-
ent models perform differently depending on which and how many
input variables are fed to them for training. The generic tests in
the previous section fed the same set of 9 input variables to each
model. This may have hampered their performance on some oc-
casions. Additionally, given the large study area, the influences of
the different climate indices vary greatly. To investigate how the
models react to different inputs, tests are run again on the set of
chosen regions. Every model is run on the sub-regions defined in
section 2.2 multiple times, but in each iteration, another predictor
is added to the input. The numbers of indices (i.e., the input vector
lengths) that the models are tested on are Nindices = {1..9}. To
choose the order in which the predictors are added, their absolute
Spearman’s correlation coefficient is first calculated with the pre-
cipitation time series at each grid point. Then the mean of the cor-
relation at all grid points is taken for each region individually and
the indices are sorted in descending order. The rank order of the in-
dices is shown for each location in table 6. Iterating over Nindices,
the best n ∈ Nindices are added to the input vector in decreasing
order. It must be noted that the correlation strength of every added
predictor may decrease quicker for some regions than for others.
This also means that model performance not increasing with fur-
ther added indices does not necessarily imply that the model can
not handle more predictors, but that the added climatic index just
has a low correlation with precipitation in that region.
These tests are conducted using the parameters obtained in the pa-
rameter search section 4.1 and using 5-fold cross validation to get
representative results (theoretically, the optimal parameters could
change with the length of the input vector, but from thereon, the
testing space grows too large). For each model, the performances
using the different input vector lengths are evaluated on the vali-
dation data of all the regions. In order to visualize this, the plots
in 9 show the mean r2 score over the grid of each region with an
increasing number of indices added from left to right (the value on
the outer right corresponds to an input vector of length 9, like tested
in the previous section). A table summarizing the best n indices for
each model and location is given in table 7. The best number of
indices in this table is determined for each model and location by
choosing the highest mean.
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Fig. 6. Validation and test set results at each grid point scored with r2. Only landmass is shown.

Table 6. Ranked indices and their mean absolute Spearman’s ρ at each location.
Rank Southern France/NAO Southern France/SCAND Eastern Spain/WeMO Balkans/WeMO Balkans/AO Northern Algeria/EA
1 scand 0.24 wemo 0.29 wemo 0.24 wemo 0.32 ao 0.21 ea 0.22
2 nao2 0.23 ao 0.24 nao2 0.24 eawr 0.24 ea 0.19 nao2 0.16
3 ao 0.22 scand 0.23 ea 0.15 ao 0.21 nao2 0.19 scand 0.11
4 wemo 0.22 nao2 0.21 scand 0.12 nao2 0.18 eawr 0.17 wemo 0.1
5 eawr 0.16 eawr 0.16 ao 0.08 scand 0.16 wemo 0.16 ao 0.1
6 ea 0.08 ea 0.07 moi1 0.06 ea 0.12 scand 0.12 eawr 0.06
7 moi1 0.04 amo us 0.04 eawr 0.04 moi1 0.07 amo us 0.09 moi1 0.03
8 amo us 0.04 moi1 0.03 amo us 0.02 amo us 0.06 moi1 0.03 amo us 0.03
9 soi std 0.03 soi std 0.03 soi std 0.02 soi std 0.02 soi std 0.02 soi std 0.02

As seen in the figures, the model performances can vary greatly
depending on the number of predictors and location and there are
many occasions in which the ideal number is below 9. LR and M5

behave nearly identical and generally work well with most indices
added to the input. This is even more the case for RF which uses 7-9
indices for achieving best predictions. Exceptions are both South-
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Fig. 7. Distribution of each models’ r2 scores across the grid points of the
entire study area as seen in the left column of fig. 6.

Fig. 8. See fig. 7 but on the test set.

Table 7. Best number of indices for each model and region
Region LR RF M5 NN1 NN2
Southern France/NAO 7 7 7 7 8
Southern France/SCAND 8 8 8 6 7
Eastern Spain/WeMO 9 8 9 9 6
Balkans/WeMO 4 7 4 4 5
Balkans/AO 5 9 5 4 5
Northern Algeria/EA 4 7 4 6 4

ern France regions and Balkans/AO, where adding the 9th (and 8th)
index results in a slight dip in the performance. In Northern Alge-
ria/EA LR and M5 also work best with only the first four indices
added to the input, although overall performance is extremely poor
in this region with r2 scores below 0.1. For the Balkan regions,
where the best performance lies at only 4 or 5 indices, adding more
indices barely affects the influence at all and brings only a slight
decrease.
Most interestingly, there are some occasions where NN1 performs
best with much less than all 9 indices. This can be best observed in
both of the Balkans regions, where using more than the 4 best cor-

relating indices (WeMO, AO, EAWR and NAO) significantly wors-
ens the performance. In these two locations, this selection of less
indices enables NN1 to reach the overall best score. The weakness
of NN1 to process the longer input vectors is remarkable as ANNs
are better suited to use higher dimensional input. The reason for
this could lie in the lack of training samples. The examination on
smaller regions gives a better insight than on the entire map (like
in the previous section) and reveals that NN1 is able to take a sig-
nificant lead over the other models in many regions even with all
input features selected. Regions such as Balkans/AO where NN1
performs much worse with all features could be the reason of its
lacking performance in the previous section.
Despite being averaged using cross-validation, the results of the
NN2 MLP appear noisy and unclear. A rough upwards trend can be
observed as to which number of indices is best used for this model,
though using all indices never leads to the best results. It can be said
that its best performance lies somewhere in the mid-ranges (using
either one or all indices never leads to great results).
An interesting side note is that the multidecadal AMO adds valu-
able prediction skill to most models in Southern France and Eastern
Spain, despite its relatively low correlation and thus being added to
the input as one of the last indices.
Generally it can be said that one should be cautious when selecting
input features for a model to achieve best possible predictions, es-
pecially when applying MLPs. Also, other methods than ranking by
correlation are recommended for feature selection (e.g. recursive
feature elimination), as even low-correlated indices (here AMO)
can contribute much to the prediction skill. The optimal number of
indices for each model and location are also used for the applica-
tions of the models in the next section.

4.2.2 Data split into different seasons. In the preceding sections,
the models have been trained to predict precipitation for all months.
As previously stated, most of the precipitation in the Mediterranean
occurs during the winter months. At the same time, the climatic in-
dices oscillate independently of the season and their time series are
mostly provided already deseasoned. Furthermore, the influence of
the climatic indices varies strongly across the year (e.g. NAO has
the greatest influence on precipitation during winter). This means
that the climatic indices could oscillate so that they appear with
identical or similar values multiple times across the year, while the
precipitation values (that are to be predicted) could be different for
those same input values at different times of the year. Despite using
deseasoned precipitation data, this occurrence may still be reflected
as an impairment to the ability of the models to estimate rainfall.
To investigate whether this phenomenon has an effect on the mod-
els’ performances, the input and target data is split into the four
seasons, namely DJF, MAM, JJA, SON. With an overall available
480 months of data, this reduces the number of data points to just
120 months for each season. The models are then trained and tested
exclusively on each of the four seasons. Like in the previous sec-
tion, the parameters used are the ones determined in section 4.1 and
5-fold cross validation is applied. Additionally, the results from the
previous section 4.1.8 are applied and only the best n indices are
used depending on the model and location. The models are then
evaluated for each region and each season to be compared next to
one another in the boxplots in fig. 10.
The seasonal differences become evident in the visualizations. The
winter season (DJF) consistently sees the best results across all lo-
cations and for all models. Spring (MAM) and autumn (SON) come
second to that with scores in similar ranges, but different behaviour
in different regions. For spring, the models perform best in South-
ern France/NAO, the dry regions of Eastern Spain and Northern
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Fig. 9. Mean r2 scores of the models’ predictions on each region with increasing number of indices added to the input vector (left to right). Most notably,
NN1 works best with only 4 indices as input in both Balkan regions and has much worse performance with longer input vectors. (See legend in middle bottom
row plot for colors associated with the models.

Fig. 10. Seasonal performance of each model on the validation sets of the different regions. The seasonally differing influence of the indices becomes evident
with summer (JJA) being the hardest to predict and winter (DJF) being the season where the models show best results. r2 scores of above 0.6 are reached in
some regions (Balkans) which is much higher than scores reached in the previous all-yearly predictions. NN1 is shown to consistently outperform the other
models apart from NN2, which also shows good performance in some locations/seasons.

Algeria (where only NN1 manages to perform at all). For South-
ern France/SCAND, they perform similarly during spring and au-
tumn regarding the mean but show a much greater spread up- and

downwards for spring than for autumn. For both chosen Balkan
regions, all the models perform better during autumn than during
spring. Lastly, almost all the models appear to be failing to pre-
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dict the low precipitation during summer (JJA) in all regions. The
only exception to this being the MLPs implemented in both, NN1
and NN2 which show some marginal performance for summer. For
these models too, summer precipitation is the hardest to predict.
The explanation for the seasonal differences lies in the correlation
strengths of the predictors which vary within the years in similar
patterns. To visualize this, the correlation between the most domi-
nant atmospheric index and the precipitation of the regions has been
calculated for each of the seasons separately. The correlations are
shown in the appendix fig. 13. The distribution of the model accu-
racies across the seasons roughly resembles that of the distribution
of the correlation strengths (i.e., in seasons where the correlations
are the strongest (mostly DJF), the models tend to be the most ac-
curate as well). Exceptions to this are the regions Balkans/AO and
Southern France/SCAND, where the correlations during summer
are not lower than correlations during other seasons, while the per-
formance of the models during summer is still the worst. These low
scores of the models on summer precipitation can further be ex-
plained with the summer mean precipitation of the non-deseasoned
dataset, which is the lowest during summer for all regions (see ta-
ble 8).
LR mostly ranks 3rd after M5 and NN1 for most locations and
seasons and only manages to outperform RF consistently. Only
in the dry region of Eastern Spain/WeMO, LR manages to per-
form better than M5. Furthermore, it performs very similar to M5
in the Balkans region, which also has WeMO as dominant index.
RF fails to outperform any of the models in all regions and sea-
sons with no exception. M5, applied on these conditions, manages
to surpass LR in multiple occasions. Southern France/NAO is its
best performing location compared to the other models with means
consistently above those of LR across all seasons under the same
conditions. In other locations such as Southern France/SCAND,
Balkans/AO and Northern Algeria/EA it only manages to outper-
form LR by a small margin for some seasons. The NN1 MLP
consistently beats the latter three models in nearly all locations
and seasons. This holds up for all the means and most percentiles.
In estimating winter precipitation in Balkans/AO, r2 scores reach
an overall maximum of 0.69. The prediction accuracies of NN2
are the least determined. In some instances, they are more accu-
rate than all others whereas in other instances, they are only bet-
ter than those of RF or even worse than that (SON in Southern
France/SCAND). This is despite averaging the predictions of mul-
tiple iterations of cross-validation. NN2 outperforms all the other
models by a relatively large margin for winter precipitation in
Southern France/NAO and Northern Algeria/EA, spring precipita-
tion in Southern France/NAO and Balkans/WeMO, summer pre-
cipitation in Southern France/SCAND and autumn precipitation in
Balkans/W. For the other cases it performs similar to the other mod-
els, mostly still better than LR. Its worst predictions (worse than
LR) are those for spring and autumn in Southern France/SCAND
and Eastern Spain/WeMO and winter in Balkans/AO.
The uncertainty in the accuracies of NN2 predictions make it ques-
tionable whether this implementation of a MLP is preferable over
that of NN1. Its superiority over NN1 and the other models in some
seasons hints a potential that could be made more robust with a bet-
ter choice of parameters, different Neural Network shapes or addi-
tional features.
Interestingly, both MLP models significantly outperform their com-
petitors in the hardest to predict dry region of Northern Algeria,
albeit only reaching scores in lower ranges (maximum reached r2
of 0.22). The MLPs also make best predictions for summer pre-
cipitation in Eastern Spain, which is even lower than that of Alge-
rian summer (see table 8). Furthermore, NN1 and NN2 are the only

models that can estimate some of the variance of dry summer pre-
cipitation, though only reaching r2 scores of 0.25 at best in South-
ern France/SCAND with NN2. The only exception to this appears
in Balkans/WeMO, where LR and M5 show a marginal prediction
skill. This region is also the one that receives the most precipitation
during summer compared to the other regions (see table 8).
Overall, estimating precipitation trends based on climate indices as
pursued in this study works best with focus set on only discrete
seasons. With this approach, the best models manage to reach r2
scores up to twice as high as those reached on estimations over
the entire year. For instance, in the Balkans/WeMO region, most
of the models achieved mean r2 scores of around 0.23 (as derived
from the figures of the parameter searches of the individual mod-
els). When applied seasonally, the same models reach mean scores
around 0.45 for winter while maintaining good performance for au-
tumn.

5. CONCLUSION
The present study evaluated the relative performance of various lin-
ear and non-linear regression models to model Mediterranean pre-
cipitation based on 9 climate indices. The precipitation data is de-
seasoned and given in monthly time scale (monthly averaged daily
precipitation).
In part 1 (4.1), the models were tested on a large scenario, con-
sidering all predictors chosen for this study, the entire geographic
study area and all seasons. The results show that Linear Regres-
sion is hardly surpassed in this universally set use case. M5 is the
only model on-par with LR. RF is shown to be unsuited for this
type of application. The MLPs of NN1 and NN2 are also strug-
gling to make accurate predictions under the given conditions. The
noisiness of NN1 results, that are possibly due to the little available
training data, suggest that it is important to make ensemble pre-
dictions when using similar implementations of MLPs on monthly
predictions. The biggest drawback of NN1 is the very high com-
putation time compared to other models. It takes multiple thousand
times longer computation times than LR, while RF, M5 and NN2
are still relatively quick and need about 100 times longer than LR.
The significantly shorter fit times of NN2 as compared to NN1 sug-
gest that when using MLPs on gridded data, it is recommended to
exploit their capabilities to make predictions on larger targets at
once instead of training one model on each time series.
The results of part 1 also highlighted some of the circumstances
under which the regression models are most effective. It was found
that in the Mediterranean, the models make best estimates in west-
ern parts of landmasses, where precipitation is mostly controlled by
the westerlies. These are regions where NAO, AO and WeMO have
the strongest correlations with precipitation. The models struggle
to make rainfall estimations in regions where the aforementioned
indices have less influence and where EA and SCAND are most
prominent. The insights highlight the importance of a good choice
of predictors depending on the observed region. Moreover, the
struggle of the regression models to exceed LR despite their abil-
ities to learn nonlinear relationships suggests that rainfall estima-
tions are generally difficult to make in use cases that are designed
too ambitious in terms of the time periods to be predicted and num-
ber of predictors. Conclusions were drawn that the models should
be evaluated under different conditions that address the difficulties
of the first approach to get a better picture of their behaviour and
capabilities.
In part 2, models were first tested using less input features and then
tested on seasonally separated data. These tests were conducted
on 6 smaller regions with differing climatic conditions within the
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Mediterranean.
In the first test, the models were run multiple times, iteratively us-
ing more predictors out of the selection of 9 indices. The predictors
are added in order of strongest to least correlating in the respec-
tive region. The results revealed that using more predictors doesn’t
necessarily improve a models’ performance. More specifically, RF
generally works best with most predictors added to the input vec-
tor, LR and the marginally better performing M5 have strong per-
formance independently of the number of predictors upwards of 4,
NN1 sometimes works best with only few (4) selected predictors
and the best choices for NN2 are not very clear. Furthermore, NN1
was found to be able to outperform all other models by a significant
margin with the right choice of input.
To further address the weaknesses of the models on the universal
approach of part 1, they were additionally tested on the 4 seasons
exclusively. The highly varying prediction skills throughout the
four seasons demonstrate the differing influences of the climatic
indices on deseasoned precipitation in each season. It becomes evi-
dent that observing the teleconnections seasonally should generally
be preferred. The seasonal predictions can be much more accurate
as compared to those on the entire year and the seasonally differ-
ing influences of the predictors become much more visible. This
holds up especially for winter season which is of particular interest
in Mediterranean climate research, given that this is when the most
of the annual precipitation occurs. In this seasonal approach, RF re-
mained the worst regression model. M5, and NN2 on the other hand
were able to outperform LR in many occasions and NN1 took the
lead in nearly all occasions. Both MLP implementations turned out
to be the best performing models for the hardest to predict dry re-
gions such as Eastern Spain and Northern Algeria. They are also the
only models to show some correct predictions for the dry Mediter-
ranean summer seasons, though still performing very poorly. This
is despite the training data being cut to just 1/4th of the original
data resulting in very little data points to train on.
Overall, the results show that there is no such thing as ”the” best
model, but that the choice of model depends on the type of appli-
cation. We recall that the scope of this study is narrowed down to
estimation of gridded deseasoned precipitation data using one or
more large-scale atmospheric oscillation indices as predictors with
no lead times and on a monthly timescale. With reference to our
findings in part 1 of the study, we suggest the use of MLR for ap-
plications disregarding the seasons/seasonality of the teleconnec-
tions and set on larger grids, where short computation times are
desired. Its advantages over the other models are robust predictions
and shortest fit times.
For applications that consider the seasons separately (which we
also recommend) and where computation time is less important, we
recommend an approach using an MLP implementation similar to
that of NN1, preferably in an ensemble to make more robust predic-
tions. Its advantages over the other models are consistently better
predictions on seasonal precipitation, including predictions in dry
regions, where other models fail. This could be of specific interest
for the Mediterranean region, where dry conditions are expected
to increase, consequently posing an increasing threat. Furthermore,
Neural Networks have the largest potential as they have the largest
parameter space that can be tuned.
Lastly, we want to mention the MLP implementation of NN2 which
uses the same input to predict an entire extract of the gridded pre-
cipitation dataset. Its promising results in a few regions of the sea-
sonal approach indicate its potential to beat other models in regard
to fit time and accuracy. However, since the shown results are at
times not very robust, it needs further improvement, for example
through choices of different parameters, Neural Network shapes or

perhaps by also feeding them the month of the data point as an input
feature.
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Sherry Moore, Derek Murray, Chris Olah, Mike Schuster,
Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Tal-
war, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fer-
nanda Viégas, Oriol Vinyals, Pete Warden, Martin Watten-
berg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. Ten-
sorFlow: Large-scale machine learning on heterogeneous sys-
tems, 2015. Software available from tensorflow.org.

[2] P Alpert, T Ben-Gai, A Baharad, Y Benjamini, D Yekutieli,
M Colacino, L Diodato, C Ramis, V Homar, R Romero, et al.
The paradoxical increase of mediterranean extreme daily rain-
fall in spite of decrease in total values. Geophysical research
letters, 29(11):31–1, 2002.

[3] PA Arias. Technical summary. in: climate change 2021: the
physical science basis, 2021.

[4] Anthony G Barnston and Robert E Livezey. Classification,
seasonality and persistence of low-frequency atmospheric
circulation patterns. Monthly weather review, 115(6):1083–
1126, 1987.

[5] Leo Breiman. Random forests. Machine learning, 45(1):5–
32, 2001.

[6] B Choubin, A Malekian, S Samadi, S Khalighi-Sigaroodi, and
F Sajedi-Hosseini. An ensemble forecast of semi-arid rainfall
using large-scale climate predictors. Meteorological Applica-
tions, 24(3):376–386, 2017.

[7] Bahram Choubin, Shahram Khalighi-Sigaroodi, Arash
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Javier Martin-Vide, and Aziz Benhamrouche. Spatiotempo-
ral variability of daily precipitation concentration and its re-
lationship to teleconnection patterns over the mediterranean
during 1975–2015. International Journal of Climatology,
40(3):1435–1455, 2020.

[19] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss,
V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Ma-
chine learning in Python. Journal of Machine Learning Re-
search, 12:2825–2830, 2011.

[20] John R Quinlan et al. Learning with continuous classes. In
5th Australian joint conference on artificial intelligence, vol-
ume 92, pages 343–348. World Scientific, 1992.

[21] Mehdi Rezaeian-Zadeh, Hossein Tabari, and Hirad Abghari.
Prediction of monthly discharge volume by different artifi-
cial neural network algorithms in semi-arid regions. Arabian
Journal of Geosciences, 6(7):2529–2537, 2013.

[22] Concepción Rodriguez-Puebla, AH Encinas, S Nieto, and
J Garmendia. Spatial and temporal patterns of annual pre-
cipitation variability over the iberian peninsula. International
Journal of Climatology: A Journal of the Royal Meteorologi-
cal Society, 18(3):299–316, 1998.

[23] Chester F Ropelewski and Phil D Jones. An extension of the
tahiti-darwin southern oscillation index. Monthly weather re-
view, 115(9):2161–2165, 1987.

[24] Mohammad Taghi Sattari, Fatemeh Shaker Sureh, and Ercan
Kahya. Monthly precipitation assessments in association with
atmospheric circulation indices by using tree-based models.
Natural Hazards, 102(3):1077–1094, 2020.

[25] Richard Seager, Haibo Liu, Naomi Henderson, Isla Simpson,
Colin Kelley, Tiffany Shaw, Yochanan Kushnir, and Mingfang
Ting. Causes of increasing aridification of the mediterranean
region in response to rising greenhouse gases. Journal of Cli-
mate, 27(12):4655–4676, 2014.

[26] smarie. m5py, 2022. Software available from
https://smarie.github.io/python-m5p/.

[27] David WJ Thompson and John M Wallace. The arctic os-
cillation signature in the wintertime geopotential height and
temperature fields. Geophysical research letters, 25(9):1297–
1300, 1998.

15



7. SUPPLEMENTARY MATERIAL

Fig. 11. All time mean monthly deseasoned total precipitation (tp, unit in
metres). The values are capped at the 99th quantile to remove very high
precipitation for visualization purposes.

Fig. 12. Indices with highest correlation with deseasoned precipitation
time series at each grid point.
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Table 8. Precipitation features of the 6 regions
Region Dominant index all-time mean DJF MAM JJA SON
Southern France NAO 2.24 2.26 2.36 1.37 3.02
Southern France SCAND 2.43 2.31 2.42 1.47 3.51
Eastern Spain WeMO 1.17 1.25 1.14 0.5 1.84
Balkans WeMO 3.19 3.42 3.14 2.28 4.02
Balkans AO 3.13 4.19 3.18 1.37 4.03
Northern Algeria EA 1.79 2.79 1.85 0.37 2.14

Note that the seasonal means are calculated on the non-deseasoned dataset. All units are monthly averaged
daily precipitation given in millimetres (mm).
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Fig. 13. Seasonal correlation for each region with its dominant climatic index.
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