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Abstract

The impact of the El Niño Southern Oscillation on hydrological systems such
as rivers is well known, but most existing studies are severely limited by data
coverage. Time series of gauging stations fade in and out over time, which
makes hydrological large scale and long time analysis challenging. Especially
when investigating rarely occurring extreme events missing data is either con-
straining the spatial area or the timespan of the study. A data driven analysis
of the ENSO impact on river discharge in South America is therefore missing.
The purpose of this study is to overcome this spatio-temporal trade-off and
fill the gap of such an assessment using in situ data. We use Gaussian Process
Regression to infer missing streamflow data based on temporal correlations of
stations with missing values to others with data. By using 216 stations, from
the ”Global Streamflow Indices and Metadata Archive”, that initially cover
the 56 year timespan, we were able to extend the data by over 11-fold as we
could estimate missing data for 2210 stations. The spatial impact of strong
ENSO events between 1960 and 2016 has then been analysed with the extended
dataset. For both La Niña and El Niño events the area of their spatial impact
was much larger than its impact on climate would suggest. Eastern Pacific El
Niños had an exceptionally strong impact, like the strong event of 1982/83,
which was by far the most intense event in our study. The top-level maps
reveal that strong ENSO events are capable of impacting peak river discharge
and floods over the whole continent whereas the individual impact maps show
very different characteristics and severity in its impact pattern.
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1 Introduction

Floods are among the most devastating natural hazards, claiming multiple
hundreds of lives per year and causing enormous economical and ecological
damage in the affected regions (e.g. Ritchie and Roser, 2014; Jonkman, 2005;
Dodangeh et al., 2020). It often takes multiple years or decades to fully restore
the damages caused by the flood. Especially developing countries are more ex-
posed to the effects of floods, recording the highest number of deaths and
struggle even more to overcome the long term damages of floods (Zorn, 2018).
But even developed countries are not fully prepared to deal with the devasta-
tion of floods, despite early predictions and warning systems, as demonstrated
by the recent floods in July 2021 in Belgium and Germany. Over the years, so-
cieties have developed mitigation measures such as physical barriers like dams
or complex warning systems and forecasting models to minimize the vulnera-
bility and the effect of floods on societies (e.g. Schanze et al., 2006; Hirabayashi
et al., 2013). Enhancing flood forecasting, risk assessment, and warning models
is a main motivation for hydrological researchers around the globe to reduce
humanitarian and socioeconomic damage. Especially with regard to an in-
crease in flood frequency, intensity and an increase in global flood risk in the
next decades under a changing and warming climate (e.g. Hirabayashi et al.,
2013; Alfieri et al., 2017), this becomes even more important. However flood
forecasting is subject to large uncertainties due to the intrinsic uncertainty of
meteorological forecasts and of structural parameters of rainfall-runoff models
(Dietrich et al., 2009). Therefore, past floods, their driving mechanisms and
their courses are constantly studied to reduce this uncertainty by gaining a
better understanding of the processes and enhance flood forecasting and risk
assessment models. Guimarães Nobre et al. (2019) claim that the forecasts
of natural hazards such as floods or droughts can particularly benefit from
a better understanding of the ENSO and its embedding into climate models.
However hydrological analyses and studies of past floods with in situ data are
often challenging, as a lot of studies are severely limited due to insufficient data
availability and missing values. This can lead to floods not being represented
in the data, because gauging stations might not have been actively recording
during the time of occurrence. This is the reason why flooding events cannot
be reasonably analysed using in situ data alone. The problem of missing data
originates from a scattered installation of gauging stations at different times in
the past and an inconsequent maintenance which is why many stations do not
provide continuous measurement data. This results in time series of stations
fading in and out over time making large-scale hydrological analyses such a
challenging task. Due to the constant trade-off between temporal and spatial
coverage, hydrological analyses with in situ data can usually only be reason-
ably performed on a basin scale. To investigate larger regions or even perform
analyses on a global scale, the outputs of climate simulations are typically
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used as primary data source (e.g. Yamazaki et al., 2018; van Vliet et al., 2013;
Nohara et al., 2006). However, to assess the magnitude of individual drivers
on river discharge, in situ data is preferred as it exhibits less uncertainty than
modeled data. This study performs such a hydrological data-driven analysis
for the entire continent of South America, and aims to shed light on the ques-
tion of how and where the El Niño Southern Oscillation (ENSO) impacts peak
river discharge. To the best of our knowledge, such a large-scale analysis using
in-situ data has not been undertaken yet. This is why we were eager to fill
this gap and assess ENSO’s impact on rivers in South America.

The ENSO is one of the most prominent patterns for inter-annual climate vari-
ability around the globe (Emerton et al., 2017) and has a climatological and
socioeconomic impact worldwide (McPhaden et al., 2006). It impacts river
discharge in a direct and indirect manner as the shift in atmospheric circula-
tion that comes along with the ENSO leads to sea surface temperature (SST)
anomalies in the Pacific and induces precipitation and temperature anomalies
around the globe. This is a relation quite well studied and increasingly well
understood (Dilley and Heyman, 1995). In the year 1995, Dilley and Heyman
already established a connection between disasters such as droughts or floods
and the ENSO, especially in those regions that are affected by ENSO-induced
temperature and precipitation anomalies. While this holds for many basins in
South America, Yan et al. (2020) showed that this precipitation-flood relation
does not hold for all basins affected by ENSO-driven precipitation anomalies
and states that flood indices such as flood frequency or flood duration tend to
be correlated stronger to the ENSO than precipitation. Also, the nonlinear-
ity between precipitation and flood hazards has been shown as river discharge
is a complex system, whose reduction to precipitation anomalies would be a
strong simplification (Stephens et al., 2015). Streamflow is an integral part of
the interplay in the hydrological water cycle, where each component impacts
the other. That is one reason why modelling river discharge is such a chal-
lenging task as this interplay varies from region to region and from river to
river. Also natural factors such as the drainage basin, antecedent rainfall and
moisture, the type of soil and rock, the amount of precipitation, temperature
and vegetation are all drivers of runoff and therefore drivers of river discharge
(e.g. Yang et al., 2019; USGS.gov, 2021). In addition to the natural causes,
anthropogenic factors can drastically affect runoff and river discharge as well,
for example through urbanisation, the construction of dams, change of land
use or deforestation among many others.
As both, the ENSO as well as river discharge or floods are multilayered and
complex phenomena we aim to investigate not individual features, but the
overall impact of ENSO on river discharge. We present a top level picture on
the regions where ENSO impacts peak river discharge and is capable to induce
floods in South America, which might possibly enhance the representation of
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ENSO in flood risk assessment and flood forecasting models (Guimarães Nobre
et al., 2019). This study focuses on the region of South America where gauging
stations show high temporal variability, ranging from one to 116 years of data
coverage. However, investigations on ENSO’s impact require a long temporal
coverage as it has a naturally low frequency of two to seven years and strong
ENSO events occur even less frequent. Data has been reconstructed and in-
ferred for stations that were no longer maintained or were installed only in
recent years. By extending the timespan of individual stations, we were able
to undertake such a large-scale data driven approach. We train a complex
function for each target time series with missing values, based on its highest
correlated time series that contain data over the whole timespan. Technically,
this is a classic regression task for supervised learning as we desire a function to
a given input-output mapping. Determining the characteristics of such a func-
tion a priori is unreasonable, which is one of the main motivations Gaussian
Process Regression (GPR) has been used for this regression task. Gaussian
Processes (GPs) can be understood as a distribution over functions (Rasmussen
and Williams, 2006), which is why all possible complex and simple functions
are respected and taken into account. Also, GPR provides a measure of uncer-
tainty for each inferred value in our target time series, which is another main
advantage to other classical regression tasks. The work of Sun et al. (2014)
compared the performance of forecasting streamflow data with GPR to linear
regression and artificial neuronal network models and GPR outperformed both
models in most cases, which fortified the decision in using GPR for our study.
By extending our data coverage through interpolating missing values with GPs
we attempt to present a possible solution to deal with the spatio-temporal
trade-off and the problem of missing data when working in a hydrological con-
text. The main motivation for this study is to examine the ENSO impact
on South America with regard to peak river discharge. Also, we aim to con-
tribute to the disentanglement of the interplay of climatological driving forces
and their magnitude on river discharge by assessing the impact on river dis-
charge during ENSO phases. Getting a better understanding about where the
ENSO impacts floods and to what extent can possibly enhance flood forecast-
ing and flood risk assessment tools, as ENSO’s impact as a driving force can
be better understood and embedded in models.
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2 Data and Methods

2.1 Global Streamflow Indices and Metadata Archive

The ”Global Streamflow Indices and Metadata Archive” (GSIM) published in
April 2018 by Lukas Gudmundsson, Hong Xuan Do, Michael Leonard, and
Seth Westra is a hydrological streamflow dataset on a global scale, containing
streamflow data from in situ gauging stations around the world. With the
release of this dataset, a large step towards dismantling barriers of the acces-
sibility of hydrological data has been made, pushing transparent research and
open accessibility forward at the same time. The streamflow data from various
institutes has been cleaned, standardized and assessed by uniform quality mea-
sures to create this dataset. Merging scattered datasets around the world to
create one central database and providing this archive for free makes the GSIM
the first of its kind and is a big contribution to the hydrological community.
The highest resolution in the GSIM is monthly, which is the resolution used
for this study. As some organisations prohibited the publication of daily data,
monthly, seasonal and yearly datasets have been derived from daily streamflow
measurements. The GSIM is composed of 30,959 streamflow gauging stations
from which 3,449 are located in South America. The spatial distribution of
stations with missing values during the timespan from January 1960 until end
of May 2016 and the ones with continuous data is presented in Figure 1.

Figure 1: Spatial distribution of stations initially covering the full timespan of 56 years from 1960 until 2016
(216 stations marked in orange) and stations that contained missing values during this time (2210 stations
marked in blue).
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The average temporal coverage of a GSIM station in South America amounts
to 29.3 years, which is the second lowest continental average and more than
23% below the overall average temporal coverage (Do et al., 2018). Stations in
South America show a large temporal variety from one year up to 116 years.
This originates from a scattered and inhomogeneous installation of gauging
stations in combination with an insufficient maintenance. With this work we
strongly rely on a large temporal coverage such that we are able to include a
sufficient number of events in the analysis.

The Oceanic Niño Index (ONI) in combination with the standard definition,
where at least three consecutive months of ± 0.5 in the Niño 3.4 region are
required to be declared as an El Niño or a La Niña event (NOOA’s Climate
Prediction Center, 2021), has been used to indicate the strongest ENSO events
during our timespan of 56 years. The determined years are mainly consistent
with other indices such as the Southern Oscillation Index or the Multivariate
ENSO Index (MEI) (McPhaden, 2020). The years and their respective ONI
are listed in Table 1.

El Niño ONI La Niña ONI
1965/66 2.0 1973/74 -2.0
1972/73 2.1 1974/76 -1.7
1982/83 2.2 1988/89 -1.8
1997/98 2.4 1998/01 -1.7
2015/16 2.6 2010/11 -1.6

Table 1: The five strongest El Niño and La Niña events and their absolute maximum values achieved by the
ONI during the active phase. An event has been declared due to the standard definition of 3 consecutive
months of +/- 0.5 ERSST.v5 SST anomalies in the Niño 3.4 region (NOOA’s Climate Prediction Center,
2021).

2.2 Spearman’s Rank Correlation

Based on 216 stations that initially covered the 56 year timespan, missing val-
ues for 2,210 stations were inferred that show a minimum overlap of 60 months
of valid data with our timespan. For each target timeseries the Spearman’s
Rank Correlation (SRC) has been computed on the temporal overlap with
stations covering the whole timespan. The ten highest correlated timeseries
were used to train the Gaussian Process model. We chose SRC to compute the
correlation between streamflow timeseries as it is more robust to outliers than
regular Pearson’s Correlation by its transformation of the values of a timeseries
into their ranks . Also, it shows higher correlation values for non-linear but
monotonic correlated timeseries, which is more robust when analysing time-
series of natural phenomena with large variability as they are not necessarily
linearly related.
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The ten most correlated timeseries were included in the training process for
the GP model. Test runs to verify the amount of stations to include in the
model were made, ranging from one to 200 stations. The distribution of the
respective root mean squared errors (RMSE) were analysed and in general
fewer timeseries achieved lower RMSE values and better results. The number
of ten was reasonable and passed the robustness check of ± 50 % where the
distribution of RMSE did barely vary which is shown in Figure S2.

2.3 Gaussian Normalisation

Streamflow data is not normally distributed and shows a large variety among
stations in terms of absolute discharge. That is why raw streamflow data is
challenging to handle for the GP. To normalize the data, a transformation into
percentiles has been performed on each timeseries before transferring into a
Gaussian distribution. This transformation preserves the relative dynamics,
but discards the absolute discharge values of a time series. This comes along
with convenient Gaussian properties which enables us to train the GP model
with ease. Figure 2 shows an exemplary excerpt of a timeseries during each
transformation step and its corresponding distribution.

Figure 2: Transformation of a time series during each transformation step from measured river discharge

[m
3

s
] into percentiles of score and finally into a zero mean Gaussian distribution (left), and its corresponding

distribution in form of a histogram (right).

2.4 Gaussian Process Regression

The derivations and equations in this section are cited and summarized from
Rasmussen and Williams (2006) and Sun et al. (2014).

Gaussian Processes (GPs) are a probabilistic machine learning tool to learn
input-output mappings from empirical data in a supervised learning fashion
(Rasmussen and Williams, 2006). GPs can be used as a tool for classification
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for discrete outputs and also for regression when continuous outputs are re-
quired, as they are in our case. A classical linear regression task aims to learn
a function f such that it explains the relationship between an input variable
x ∈ Rd and its target variable y which is mostly a scalar

y = f(x) + ε. (1)

The variable ε is an error term which should be kept as small as possible for the
best possible performance. The function f can be expressed as a combination
of a set of M basis functions φj(x)Mj=1 which can be linear or non-linear and

a set of weights w = [w1, ..., wM ]T , where each basis function is scaled by its
corresponding weight

y =
M∑
j=1

wjφj(x) + ε. (2)

The weights are trained such that they explain the input output mapping (x,y)
best. For a linear regression, two parameters would be trained (describing the
slope and the intersection), for a quadratic function three parameters. A main
advantage of GPR is that a prior limitation to a set of parameters or functions
is not needed as GPs are non-parametric models. This means that an infinite
amount of parameters can be trained, which includes all possible functions that
fit the data. For modelling streamflow time series a prior constraint on the
characteristics of the function is not reasonable which is why GPR is well suited
for our regression task. In order to train the GP model to the whole dataset
X = {xi}Ni=1 which is composed of N observations and the respective target
vector Y = [y1, ..., yN ] such that it fits the whole dataset, f = {f̂(xi, w)}Ni=1

now defines the model outputs for our input dataset X for

f̂(xi, w) =
M∑
j=1

wjφj(xi) i = 1, ..., N. (3)

We can rewrite Equation 3 by using an N x M design matrix Φ which holds
the evaluation all M basis functions for its respective input xi in each row. A
row of Φ is therefore written as φj = [φ1(xi), φ2(xi), ..., φM(xi)] j = 1, ..., N
and the whole model output as

f = Φw. (4)

The design matrix Φ is also used for defining the covariance matrix K ∈ RNxN .
The symmetric and positive definite covariance matrix K is defined as

K = ΦE(wwT )ΦT = ΦΣwΦT , (5)
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with Σw as the covariance matrix of the weight vector w.

On a top level Gaussian Processes can be understood as a distribution over
functions that is completely specified by its second-order statistics, its mean
m(x) and its covariance function k(x, x′) (Rasmussen and Williams, 2006)

f(x) ∼ GP (m(x), k(x, x′)). (6)

As the GP is defined to be a collection of finite sets of random variables which
follow Gaussian distribution, the prior of f is Gaussian distributed. The prior
is defined by its covariance Matrix K and its hyperparameters of the covariance
function are denoted as θ. For simplicity a mean of zero is chosen here

p(f | X, θ) ∼ N (0, K). (7)

For a Gaussian distributed error term ε the vector of our target variables y is
also Gaussian

p(y | f, σ2) ∼ N (f, σ2I), (8)

with I as the identity matrix and σ2 as the variance of the error.
The desired posterior distribution after applying Bayes’ rule is defined as:

p(f | y,X, θ, σ2) =
p(y | f, σ2) p(f | X, θ)

p(y | X, θ, σ2)
. (9)

Just like the prior and the likelihood the posterior also follows a Gaussian
distribution. After substituting the prior and the likelihood into the posterior,
the following closed formulas for mean and covariance are derived:

µ = KT (K + σ2I)−1y (10)

Σ = K −KT (K + σ2I)−1K. (11)

The mean and the covariance depend on the covariance matrix K, which is
composed of Φ and its weight vector w. However, we can define K by a
covariance function k(x, x

′
) and thus µ and Σ do no longer depend on Φ. This

shifts the focus to the definition of the covariance matrix, as we no longer need
to determine individual basis functions and their weights. In theory, GPs are
very sensitive to the choice of kernels, and the choice should be assessed for each
application carefully as it generally determines the performance of the models
prediction. In its practical application however, GPs are not very sensitive
to different choices of covariance functions for time series modeling (e.g. Shi
et al., 2007; Sun et al., 2014), which is consistent with the results of our kernel
analysis upfront. For a subset of streamflow timeseries GP Regression models
were trained with different kernels and varying dimensionality. For each kernel
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the Root Mean Squared Error (RMSE) has been computed for the test set,
which has shown stable and similar results for different kernels. We chose a
Matérn kernel for our study as it was among the most stable kernels with low
RMSE. The Matérn covariance function for two points and its distance d is
given by

Cν(d) = σ2 21−ν

Γ(ν)
(
√

2ν
d

p
)νKν(

√
2ν
d

p
), (12)

where p and ν are positive parameters of the covariance and Γ is the gamma
function and Kν the modified Bessel function of the second kind (Rasmussen
and Williams, 2006).

The marginal probability of the target vector y given our dataset X is obtained
by integration over all possible functions f

p(y | X) =

∫
p(y | f, σ2)p(f | X, θ) df. (13)

From this marginal probability we can compute the log marginal likelihood as

log p(y | X) ∝ −1

2
yT (K + σ2I)−1y − 1

2
log |K + σ2I| − N

2
log (2π). (14)

Via a gradient-based algorithm the unknown parameters of θ and σ2 can be
derived from the log likelihood. As we computed the likelihood, the prior and
the evidence we can now derive the desired posterior distribution by plugging
them into Bayes theorem from Equation 9. With the posterior distribution we
can now predict the Gaussian distribution of any test sample x∗ conditioned
on the trained model

p(f∗ | x∗, y,X, θ, σ2). (15)

The mean m and the variance ν2 of the target Gaussian distribution can then
be derived for a given test sample x∗ by:

m(x∗) = φ(x∗)
Tµ = kT∗ (K + σ2I)−1y (16)

ν2(x∗) = φ(xT∗Σφ(x∗) = k∗∗ − kT (K + σ2I)−1k∗, (17)

where k∗ = [k(x∗), x1), ..., k(x∗, xN ]T is the evaluation of the kernel-function
of the new test sample in combination to every training sample we’ve seen so
far and k∗∗ = k(x∗, x∗) contains the evaluation of the kernel function between
the test sample and itself. Σ and µ are the mean and variance defined by the
posterior distribution.
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The analysis of this work was done in python and the Gaussian Processes
framework GPy developed from the machine learning department at Sheffield
University (GPy, 2012) was used to train and predict our GPR models. We
used the predefined Matérn32 kernel for this analysis and a mean prior of zero
for each model.

2.5 Similarity Analysis between ENSO events

A graphical approach to detect similarities between ENSO events, is to visu-
ally compare the maps of the spatial patterns of affected stations. This is a
good approximation to assess similarity, but in order to quantify the similarity
between events we determined the stations that were affected by top ten peak
river discharge during the active phase of the respective ENSO event. Then the
Jaccard distance has been computed on the sets of affected stations for each
combination of events among the El Niño and La Niña events. The Jaccard
distance is calculated by the fraction of the cut set of affected stations that
show peak river discharge during both events, divided by the union of all sta-
tions affected during those two events. On the distance matrix D hierarchical
clustering was performed to group similar El Niño and La Niña events together.

D(i, j) = J(i, j) =
|I ∩ J |
|I ∪ J |

(18)

A 100-fold cross validation with 5% of removed samples in each iteration has
been performed on our dataset to validate the results of the hierarchical clus-
tering. We truncated the dendrogram such that we obtain three prominent
clusters. A link was set between the events that belong to each group. This
adjacency matrix enabled us to plot a weighted and undirected network graph,
whose edge weights are determined by the amount of clusters in which the two
events were grouped together.

2.6 Reference to code

The code for this work has been written in python, using the Gaussian Pro-
cess Regression framework GPy from the University of Sheffield (GPy, 2012)
and is openly accessible in this repository: https://github.com/mdeppner/

enso-streamflow-gpr. The inferred data as well as the GSIM datasets are
provided in the repository, such that the work can be reconstructed on a local
machine with the jupyter notebooks.
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3 Results

By interpolating data of timeseries which contain missing values, the amount
of stations that can be included in this analysis was extended by over 11 fold
from initially 216 to 2426 stations. This increase in data and therefore sta-
tions allowed us to undertake a data-driven large-scale hydrological analysis
on streamflow and ENSO’s impact on river discharge. Due to a high variabil-
ity of temporal coverage of stations in the GSIM, short time series naturally
show peak river discharge during their active time in which measurements were
taken. As this does not necessarily represent the actual time of highest river
discharge during the investigated timespan, a temporal bias would be induced
when using the raw GSIM data in this study, which motivated us to infer the
missing values and analyse this problem with an extended dataset.
The presentation of the results is structured from general to more specific re-
sults as we go from a top level view on the impact of El Niño and La Niña
events to a more unraveled and detailed analysis of the groups of the similar-
ity analysis. We then amplify the impact of the 1982/83 El Niño and finally
present the impact of different types of ENSO events on South American rivers.

(a) Top level map of the impact of El Niño (b) Top level map of the impact of La Niña

Figure 3: Cumulative plot of stations affected by at least one of its top ten highest monthly river discharge
values measured during at least one of the five El Niños or La Niñas investigated. Stations marked with red
triangles are considered to be affected based on the raw GSIM dataset and stations marked with blue circles
after missing values were inferred for this timeseries.

3.1 La Niñas impact

The pattern of affected stations for which we inferred data generally aligns with
the pattern of stations when using the raw GSIM dataset. Despite a number
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of stations in the Colombian Andes that fall out of line and only show peak
river discharge under raw data, the inferred stations generally superimpose the
pattern of the raw data. Figure 3b shows the pattern of the five strongest La
Niña periods combined. Stations which have at least one of its ten largest river
discharge values measured during at least one of the five strongest active La
Niña periods during the 56 year timespan are marked in this map. Figure S3
shows the individual pattern for each of the five strongest La Niña periods.
A large number of stations are affected by peak river discharge in the southeast
of Brazil and the La Plata basin. Also a large number of stations are concen-
trated along the east and northeastern Atlantic coast of Brazil. Those regions
are also the ones with the highest spatial concentration of stations which is de-
picted in the Heatmap in Figure S1. A less concentrated but still quite widely
impacted area during La Niña phases is the Amazon basin where relatively
many stations were affected by peak river discharge. Comparing this pattern
with the regions of La Niña-induced precipitation and temperature anomalies,
a clear spread farther south is noticeable (Lenssen et al., 2020). La Niñas
are usually capable of inducing a wetter climate along most of Columbia, the
whole Caribbean Coast, parts of north Brazil and the northern part of the
Amazon region. The Argentinian Atlantic Coast and the Southern Brazil are
usually drier during the active phase of a La Niña as well as a small region on
the Pacific coast in central Chile (Lenssen et al., 2020). The region where La
Niña is capable of inducing higher precipitation is in logical relation to where
stations with peak river discharge were found. As Dilley and Heyman (1995)
already stated, it seems that there exists a connection between floods and the
ENSO as the regions of usually higher precipitation and temperature are also
affected by peak river discharge and floods during La Niña phases. What the
results show is that stations and even whole regions much farther south were
affected as well. This supports the finding by Stephens et al. (2015) who stated
the nonlinearity between precipitation and floodiness. It seems that La Niñas
are capable of impacting river discharge and floods even in regions where it
typically does not feature an increase in precipitation. This relation between
floodiness or peak river discharge and precipitation will be targeted as well in
the next section where the impact of El Niño is discussed.

3.2 El Niños impact

The pattern of inferred stations that show at least one of its top ten peak river
discharge values during the time of at least one of the five El Niño events inves-
tigated does also align with the pattern of stations when using the raw GSIM
dataset. The top level picture of El Niños impact on river discharge in South
America is presented in Figure 3a which shows a cumulative plot of all stations
affected during the five El Niños of interest in our study. The dense region of
affected stations in the southeast of Brazil, parts of Uruguay and Paraguay is
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consistent with the regions of El Niño-induced precipitation and temperature
anomalies, as the region up to 20°S is usually associated with a wetter climate
during an active El Niño event (Lenssen et al., 2020; Guimarães Nobre et al.,
2019). The pattern of affected stations however spreads much farther north
than the precipitation anomalies during an El Niño would imply. Stations in
the Amazon basin were affected by peak river discharge and floods during those
El Niños, although this region is usually known to have less precipitation and
a drier climate during an active El Niño period (Lenssen et al., 2020). Nev-
ertheless, our results show that strong events are capable of impacting those
regions as well. The actual magnitude of El Niños impact on the Amazon basin
is hard to assess with this non-uniform distribution of stationary data. That is
why the general distribution needs to be taken into account when comparing
spatial patterns of stations. The large widely spread impact in the Amazon
basin with regard to the rather low concentration of stations in this area in-
dicates a possibly stronger impact on this region than the scattered stations
might suggest. The region with high concentration of affected stations in the
southeast of Brazil on the other hand needs to be put in relation, as the gen-
eral concentration of available stations in this area is very high. The south of
Brazil and the northeast of Brazil are the regions with highest concentration
of installed river gauges as presented in Figure S1.
The five strongest El Niño events impacted 30% more stations than the five
strongest La Niña events, which might indicate that El Niño impacts South
American rivers possibly stronger than La Niña. However it’s hard to draw
final conclusions from the absolute numbers, as the amount of stations affected
during an individual event underlay high variance. Especially due to the fact
that the 1982/83 El Niño had a very strong impact, which is why the absolute
numbers should be considered with caution.
Figure 4 shows the individual impact pattern of every El Niño event included
in our study. The South East Atlantic Coast of Brazil is affected in all of
the five events and shows the most concentrated region of affected stations by
peak river discharge, which is also the region of increased precipitation during
an El Niño. Comparing the individual impact patterns, the magnitude of the
1982/83 event becomes clearly visible as the area of impact as well as the
amount of stations is much larger than in the impact maps of the other El
Niño events.

3.3 1982/83 EL Niño

During the analysis, the 1982/83 event stood out from all other strong El Niños
such that it is the timespan during which the most stations were affected by
peak river discharge, with both, the initial GSIM and the inferred data. With
1,040 affected inferred stations, the event of 1982/93 shows more than three
times the amount of stations than any other El Niño investigated. The floods
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Figure 4: Impact pattern of individual El Niño events in a chronological order from the earliest on the top
left panel to the most recent strong event on the bottom. Stations marked in red are the ones showing top
ten peak river discharge during the active El Niño time of the respective event under the raw GSIM dataset,
stations in blue with the dataset of inferred stations. Events depicted in the top row: 1965/66, 1972/73 and
1982/83, bottom row: 1997/98 and 2015/16 from left to right.

caused an economical damage that reached the billions in some regions of the
continent, for example in the Itajáı-Açu basin or Argentina and moreover many
thousand people were displaced as societies were hit unprepared by the extent
of this flood (Fleischmann et al., 2020). In terms of precipitation, 1983 was
also exceptionally strong and in some regions in the southeast of the conti-
nent it was the year with the most extreme rainfalls between 1980 and 2015
(Fleischmann et al., 2020). Its largest rainfall volumes were observed in the
months of February, June and July, which has lead to a high water storage, soil
saturation and even swamping in the affected areas. Those heavy antecedent
rainfalls enhanced the magnitude of the floods. Regarding the water export
to the South Atlantic in the region between São Francisco and the La Plata
river outlets, 1983 reached an extraordinary high anomaly of 3.7, which is the
largest value between 1980 and 2015, followed by 1998 with a value of 1.9 and
1992 with an anomaly of 1.1 (Fleischmann et al., 2020). According to the
model predictions of Fleischmann et al. (2020) the continental water export
to the oceans in 1983 was significantly lower and in fact below average, as the
Amazon river, that contributes large parts to the continental water export,
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faced a drought during this time. They also discuss anthropogenic factors
that possibly contributed to the extent of the floods, such as the construction
and activation of dams. Also the change of land use could possibly enhance
such an extreme event, as the southeast of the continent shows a large scale
transition from forest towards grassland and some regions record a loss of for-
est fraction and an increase in cropland fraction up to 30% (Yang et al., 2019).
As cropland monocultures are known to have lower infiltration rates than nat-
ural forests, they provide lesser flood protection and make the region therefore
more vulnerable to floods, which might have contributed to the magnitude of
the 1982/83 event. The impact map of 1982/83 also has the farthest spread
towards the north and towards the west of the continent of all El Niño events
investigated. Its impact on the Colombian and Ecuadorian Andes was also sig-
nificantly greater than for any other El Niño event in our study. An individual
assessment of why 1982/83 was that intense and how individual components
contributed to the flooding during the course of this El Niño requires further
investigation.

3.4 Similarity of strong ENSO events

(a) Dendrogram of the five strongest El Niño events (b) Dendrogram of the five strongest La Niña events

Figure 5: Results of the hierarchical clustering on the Jaccard-distances of the stations that show top ten
peak river discharge during the active time of the respective ENSO event in the form of a dendrogram.

The results of the hierarchical clustering and the respective dendrograms are
depicted in Figure 5. The tables S1 and S2 report the corresponding distance
matrices for El Niño and La Niña events. The similarity analysis of the El Niño
events resulted in three groups for a distance threshold of 0.82. The respective
map with affected stations for each category is shown in Figure 6.
The first group with the highest similarity consists of the El Niño events of
1997/98 and 2015/16. According to Yu and Kim (2013) and Paek et al. (2017)
the event of 1997/98 was a clear and strong Eastern Pacific (EP) El Niño and
2015/16 is considered a mixed El Niño that has features of both an Easter
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Figure 6: Impact pattern of the categories defined by the similarity analysis for El Niño. The maps are
ordered as follows: left: 1965/66 & 1982/83, middle: 1997/98 & 2015/16, right: 1972/73. Stations marked
in red are the ones showing top ten peak river discharge during the active El Niño time of the respective
event under the raw GSIM dataset, stations in blue with the dataset of inferred stations.

and Central Pacific (CP) El Niño. Furthermore, they state that 1997 is the
strongest EP El Niño and 2015 the strongest mixed El Niño to date, which
makes them the strongest El Niño in their respective category. Both events
reached a similar sea surface temperature (SST) anomaly of 3.5°C and had a
similar evolution of the SST anomalies from the coast of South America to the
international date line, however the dynamics of 2015 differ from 1997 in a way
that it was dominated by the CP El Niño dynamics as well (Paek et al., 2017).
Although their impact on U.S. climate was quite different, they impacted river
discharge in South America in a similar manner.
The next group consists of the mixed El Niño of 1965/66 and the clear EP El
Niño of 1982/83. The latter is the event that affected the most stations of all
ENSO events investigated and induced heavy flooding events in the south of
the United States, in Ecuador and the south east of Brazil (Fleischmann et al.,
2020). The amount of affected stations during 1965/66 is with 353 stations
only a little more than one third of the 1040 stations that showed top ten peak
river discharge. During the El Niño period of 1982/83 however they both im-
pacted similar regions and stations. 1965 shows a more concentrated impact
on the southeastern Atlantic coast of Brazil and some scattered stations in the
Patagonia region, Northern Ecuador and the Northern Atlantic coast of Brazil
as well as the Tocantis-Araguaia basin. The event of 1982/83 on the other
hand has a large and concentrated amount of stations along the south and
southeast Atlantic coast of Brazil and the La Plata basin. Also, more stations
in the Colombian and Ecuadorian Andes, in Patagonia and especially in the
Amazon basin were affected.
The third category is the single event of 1972/73 which has dynamics of the EP
type but is considered as a mixed El Niño according to the pattern correlation
method by Paek et al. (2017). With 184 stations affected during the active
phase of the 1972/73 El Niño it is the event with the fewest stations of all five
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events investigated. The most stations are also concentrated along the south
east of Brazil. However, stations seem to be more scattered and spread farther
towards the north of Brazil, the Amazon basin and Patagonia.

The following paragraph describes the results of the similarity analysis for
La Niña and its respective categories. For a cutoff at 0.87 we obtained three
categories whose impact maps are presented in Figure 7. The events of 1973/74
and 1974/76 that are the most similar according to our similarity analysis
occurred with very little temporal offset from each other. As two periods (JAS
and ASO) of the three month running mean were below the threshold of -
0.5 they are considered as two individual events. The temporal closeness is
a potential explanation for the closeness of those events as already saturated
soils and rivers with high discharge after the first event are likely to flood
again more easily after only little amounts of precipitation, during the second
event. The second group consists of the 1988/89 and 1998/01 events which
are widely scattered north of 20°S latitude, and holds a more concentrated
region in the south east of Brazil, which is unusual as this is not a region
where La Niña normally induces a wetter climate. Another more concentrated
region of stations is the northeast Brazilian Atlantic Coast where this region is
among the most concentrated in terms of the overall distribution of stations as
depicted in the Heatmap in Figure S1. Nevertheless this region as well as the
whole north of South America typically has a wetter climate during a La Niña.
In general, the impact pattern of the second category is similar to the first but
intensified as a larger amount of stations were affected during the events of
the second category. They both show a generally scattered pattern around the
whole continent with two more concentrated regions. The event that shows
the least similarity to all the other events is the La Niña of 2010/11. Although
it led to intense flooding in some regions around the world like the Pakistan
floods in 2010 or the 2010/11 Queensland floods, it is the event that affected
the fewest stations in our analysis. Especially very few inferred stations were
affected but are located in the same regions as in the first two categories. The
comparison of the patterns between the inferred stations and the raw GSIM
dataset of 2010/11 emphasizes the previously described temporal bias when
using raw data, as the impact of this event seems to be much larger as to when
using data that covers the whole timespan.
As the absolute distance values of the events are close together we performed
a 100-fold cross validation, to backup the results of our similarity analysis.
The outcome of the cross validation is depicted in Figure 8 as a graph, where
the edge weights represent the percentage of those two events being grouped
together during an iteration. The groups are consistent throughout every
iteration and result in the same categories, which makes our results quite
robust.
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Figure 7: Impact pattern of the categories defined by the similarity analysis for La Niña. The maps are
ordered as follows: left: 1973/74 & 1974/76, middle: 1988/89 & 1998/01, right: 2010/11. Stations marked
in red are the ones showing top ten peak river discharge during the active El Niño time of the respective
event under the raw GSIM dataset, stations in blue with the dataset of inferred stations.

Figure 8: During each iteration i of the 100-fold cross-validation the cutoff level has been chosen such that
we obtain 3 categories. For when two events ei and ej have been grouped together the entry ei, ej in the
adjacency matrix has been incremented. The figure shows the respective graph for the adjacency matrix.
The edge weights are labeled according to the score in the adjacency matrix.

3.5 Impact of different El Niño types

The El Niño types are known to have different impacts, such as on U.S. climate
(Yu et al., 2012) or on East Asian summer precipitation (Wen et al., 2020).
Regarding the impact pattern of river discharge in South America during the
three mixed El Niños of 1965, 1972 and 2015 and the clear EP El Niños of
1982 and 1997, differences could be ascertained as well. The EP events are
the ones with the largest number of affected stations. Together they impacted
more stations than the three mixed events combined. Also larger parts in the
Amazon basin were affected during EP events. The difference in the Amazon
basin becomes even clearer when respecting the inferred stations only, as most
stations in the Amazon basin during CP El Niños are stations that do not
cover the whole timespan. Based on our small sample size it seems that EP
El Niños have a more intense impact on river discharge than CP or mixed El
Niños and that their impact extends over the whole continent, even to regions
that are usually linked to a drier climate such as the Amazon basin. Also, the
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Colombian and Ecuadorian Andes seem to be more affected by EP El Niños
than by other El Niño types. The mixed El Niños on the other hand seem to be
more concentrated on the southeast Atlantic Coast and along the northeastern
part of the Atlantic Coast.

Figure 9: Impact pattern of stations that show top ten peak river discharge during Eastern Pacific El Niño
(1982/83 and 1997/98) on the left map and central Pacific or mixed El Niño (1965/66, 1972/73 and 2015/16)
on the right

The five strongest La Niña events investigatedbelong all to the same category
following the dynamics of a CP La Niña event (Yuan and Yan, 2013). This is
why a distinction between the La Niña types was not further investigated.
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4 Conclusion

This study presents an approach under which large-scale hydrological analyses
using in-situ data becomes feasible. We were able to overcome the spatio-
temporal trade-off which in general constraints hydrological data-driven stud-
ies. By using Gaussian Process regression the amount of stations we could
include in our study could be extended by 11-fold, which allowed us to go
beyond the scale of basins or countries. The extension of the dataset allowed
us to undertake a more in-depth analysis on river discharge over the whole
continent of South America and its pattern of peak river discharge during
strong ENSO events. However, limitations still remain, as conclusions can
only be drawn for stations, which initially observed data and that provided
the minimal overlap with our timespan. For Peru, Bolivia and the region of
Patagonia, fewer stations are available in comparison to other countries and
regions in South America which are therefore underrepresented in the GSIM
dataset, and thus in our study. For those regions, a conclusion on the impact of
strong ENSO events on peak river discharge could not be made. We hope that
more institutes and organisations contribute to open and accessible data and
share hydrological data with projects like the GSIM in the near future. And
moreover we hope tha the installation and maintenance of gauging stations
is being promoted such that the amount of missing data in the hydrological
context is reduced naturally.
Another limitation of our study is the selection bias which is induced by the
stations that initially cover the timespan. As shown in Figure 1 the stations
are mostly located in the east of South America and spread along the At-
lantic Coast from north to south. Only two stations are within the Amazon
basin and none in the region of Colombia or Chile. As these timeseries are the
base on which we train our models and infer data, the dynamics of those sta-
tions are partially induced into the timeseries for which we want to fill missing
values, which might cause an inductive bias in our target time series. As a
consequence of the limited amount of stations that initially cover the whole
timespan, it is possible that some stations might not correlate strongly with
any of the 216 stations. However it is possible that stations are teleconnected
and highly correlated although they are not close to each other in space. On
the other hand spatial proximity does not necessarily imply similar streamflow
behaviour. It is not seldom the case that time series of gauging station in the
same river show different behaviour and dynamics, as river discharge can dras-
tically change during its travel time. So although in theory spatial proximity
does not necessarily imply similar dynamics in the hydrological context, more
evenly distributed stations as well as more stations in general would reduce
the selection bias in our study.
The maps according to the El Niño types indicate that clear and strong EP El
Niños have a stronger impact on the continent in terms of peak river discharge
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and floods than events that belong to the type of mixed El Niños. EP El
Niños are capable of impacting the Amazon basin as well as large parts in the
north of the continent that are usually associated with drier climate during an
active El Niño. The underlying mechanisms of why EP events tend to have a
larger impact than the other categories is beyond the scope of this work and
needs further investigation. Also the underlying causes and driving forces of
the strong impact on river discharge during the 1982/83 El Niño needs to be
further investigated, as this event outnumbered every other El Niño or La Niña
in terms of affected stations. Also its spatial impact area extended over the
whole continent both in raw and inferred stations, like no other event. Disen-
tangling the underlying causality that has led to this strong event and why it
caused such a strong impact on river discharge and floods could enhance flood
risk forecasting to better assess extreme events driven by the ENSO.
Stations in areas that are prone to higher ENSO-driven precipitation anomalies
are also those regions where peak river discharge was ascertained and often
shows the highest concentration in stations. Yet, our analysis shows that
high streamflow extends to large regions above this precipitation-prone region
and farther north (south) for El Niños (La Niñas). El Niño enhances and
impacts river discharge in the southeast of Brazil and Uruguay, but also rivers
in the Amazon basin, the Tocantins-Araguaia basin, the São Francisco basin
or the south of Chile can possibly be affected by strong events. El Niño and
La Niña events are generally capable of impacting the continent in the same
regions. For La Niña events, a high concentration of affected stations is along
the northeastern Atlantic Coast of Brazil , which is more prominent during La
Niña rather than El Niño, as well as in the southeast of Brazil. The latter is also
the region where El Niño impacted the continent the most. Also large parts
of the Amazon basin were subject to peak precipitation and floods during the
ENSO which is in logical relation for La Niña but unexpected for El Niños.
The large spread of affected stations corroborates the nonlinearity between
precipitation and floods identified by Stephens et al. (2015).
This study can easily be carried forward and applied to other regions such as
North America, Asia or Africa, or even an analysis on a global scale to further
investigate ENSO impact on river discharge. The latter would be especially
interesting as ENSO also has a worldwide impact. Also under the aspect of re-
vealing global teleconnections between river segments, a global analysis would
be especially interesting.
From a technical perspective, this approach could be further enhanced by a
more dynamical approach to estimate missing values, such that we do not rely
on stations that cover the full timespan. Multiple models could be trained for
one target time series that only cover parts of the timespan. This would allow
us to consider more stations in our basis on which we can estimate missing
values. Also, model predictions for smaller time spans would better capture
a change of river dynamics as the highest correlated time series might change
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from time segment to time segment, just like the characteristics of rivers can
change over time due to natural or anthropogenic causes.

To summarize, there are multiple findings we can derive from this study. First,
inferring hydrological streamflow data with Gaussian Processes is a feasible
approach and yields good results. Second, ENSO events are capable of im-
pacting rivers on a spatially larger scale then ENSO’s impact on precipitation
and temperature anomalies would suggest. Third, from the pattern of affected
stations we noticed that Eastern Pacific El Niños have a stronger drive towards
the north of the continent and the Amazon basin than mixed El Niños and
have a potentially stronger impact. The 1982/83 Eastern Pacific El Niño was
extraordinary strong in comparison to other events as it impacted three times
more stations than any other El Niño, although it was not the event which
achieved the highest value on the index scale. It is meaningful to group and
categorize ENSO events and estimate the magnitude of their impact based on
their index, but there is no such thing as two identical ENSO events. Even
if they have the same physical background and comparable value on the in-
dex scale, they might still show very different behaviour. As the 1982/83 event
showed, the index values is a good indicator but no guarantor to assess its mag-
nitude correctly, as events with smaller values might have larger impacts in the
end. Disentangling the interplay of individual features, the driving forces of
ENSO events and their respective impact on river discharge therefore remains
a research field of great interest for enhancing hydrological forecasting and to
develop a better understanding of why each event is so unique and different
from the other.
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5 Supplementary

Figure S1: Heatmap indicating the density of available stations in the GSIM dataset, where the area of south
Brazil up until 20° latitudinal and the north east of the Brazilian Atlantic coast are the regions of highest
density. For the Amazon basin and the Colombian and Ecuadorian Andes density of stations is rather low,
as well as in some patches of Argentina and Paraguay.
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Figure S2: For a subsample of 500 timeseries we trained GP models to predict missing values on its 5 -
15 highest correlated timeseries and plotted for each number of timeseries included a histogram of RMSE
values scored during testing. As the results for each iteration step were quite robust with little to no outliers
the dimensionality of ten has been choosen as a target value of timeseries to include during training.
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Figure S3: Impact pattern of individual La Niña events in a chronological order from the earliest on the top
left panel to the most recent strong event on the bottom. Stations marked in red are the ones showing top
ten peak river discharge during the active La Niña time of the respective event under the raw GSIM dataset,
stations in blue with the dataset of inferred stations. Events depicted in the top row: 1973/74, 1974/76 and
1988/89, bottom row: 1998/01 and 2010/11 from left to right
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1965/66 1972/73 1982/83 1997/98 2015/16
1965/66 0.00 0.90 0.82 0.91 0.89
1972/73 0.90 0.00 0.91 0.88 0.90
1982/83 0.82 0.91 0.00 0.81 0.87
1997/98 0.91 0.88 0.81 0.00 0.79
2015/16 0.89 0.90 0.87 0.79 0.00

Table S1: Distance Matrix D of the strongest El Niño investigated

1973/74 1974/76 1988/89 1998/01 2010/11
1973/74 0.00 0.79 0.87 0.94 0.97
1974/76 0.79 0.00 0.89 0.94 0.96
1988/89 0.87 0.89 0.00 0.86 0.93
1998/01 0.94 0.94 0.86 0.00 0.91
2010/11 0.97 0.96 0.93 0.91 0.00

Table S2: Distance Matrix D of the strongest La Niña investigated
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