#### **Journal Club**

19 Jan 2021



Geosci. Model Dev., 12, 1087–1117, 2019 https://doi.org/10.5194/gmd-12-1087-2019 © Author(s) 2019. This work is distributed under the Creative Commons Attribution 4.0 License.





#### SEAS5: the new ECMWF seasonal forecast system

Stephanie J. Johnson, Timothy N. Stockdale, Laura Ferranti, Magdalena A. Balmaseda, Franco Molteni, Linus Magnusson, Steffen Tietsche, Damien Decremer, Antje Weisheimer, Gianpaolo Balsamo, Sarah P. E. Keeley, Kristian Mogensen, Hao Zuo, and Beatriz M. Monge-Sanz

ECMWF, Shinfield Park, Reading, RG2 9AX, UK

Correspondence: Stephanie J. Johnson (s.johnson@ecmwf.int)

Received: 12 September 2018 – Discussion started: 1 October 2018 Revised: 18 December 2018 – Accepted: 4 January 2019 – Published: 22 March 2019

# SEAS5

- 5<sup>th</sup> gen seasonal forecast system from ECMWF
- Follows SEAS4 (2011-2017)
- In operation since 2017
- Necessary because:
  - Integrated Forecast System (IFS) has improved
    - Improved tropical convection
    - Higher resolution
    - Improved ocean physics
    - Prognostic sea-ice model

# SEAS5

- 5<sup>th</sup> gen seasonal forecast system from ECMWF
- Follows SEAS4 (2011-2017)
- In operation since 2017
- Necessary because:
  - Integrated Forecast System (IFS) has improved
    - Improved tropical convection
    - Higher resolution
    - Improved ocean physics
    - Prognostic sea-ice model

# IFS

- Forecast system (not a single model) composed of
  - Atmospheric model
  - Ocean wave model
  - Ocean model
  - Land surface model
  - Data analysis system
  - Preturbation system (for ensemble generation)

# IFS



- Forecast and re-forecast
- Model configuration
- Model initialisation
- Ensemble generation

- Forecast and re-forecast
  - Forecasts
    - "long range" forecasts include
    - 51 ensemble members
    - Initialised on 1<sup>st</sup> of every month
    - Integrated for 7 months
    - 15 are selected on 1<sup>st</sup> of Feb, May, Aug & Nov for a further 6 month integration
      - These provide ENSO "outlooks"

- Forecast and re-forecast
  - Re-Forecasts
    - i.e. retrospective forecasts (aka hindcasts)
    - 25 ensemble members
    - Initialised 1<sup>st</sup> of every month (1981-2016)
    - 15 are initialised on 1<sup>st</sup> Feb, May, Aug, & Nov for longer integration
    - Only data from 1993 to 2016 are used to calculate forecast anomalies (due to warming)

#### Model configuration

|                                             | SEAS4                 | SEAS5                 |
|---------------------------------------------|-----------------------|-----------------------|
| IFS cycle                                   | 36r4                  | 43r1                  |
| IFS horizontal resolution (dynamics)        | T255                  | T319                  |
| IFS horizontal grid                         | linear                | cubic octahedral      |
| IFS horizontal resolution (physics)         | N128 (80 km)          | O320 (36 km)          |
| IFS vertical resolution (Top of atmosphere) | L91 (0.01 hPa)        | L91 (0.01 hPa)        |
| IFS model stochastic physics                | 3-scale SPPT and SKEB | 3-scale SPPT and SKEB |
| Coupling                                    | OASIS3                | single executable     |
| Ocean model                                 | NEMO v3.0             | NEMO v3.4.1           |
| Ocean horizontal resolution                 | ORCA 1.0              | ORCA 0.25             |
| Ocean vertical resolution                   | L42                   | L75                   |
| Sea-ice model                               | sampled climatology   | LIM2                  |
| Wave model resolution                       | 1.0°                  | 0.5°                  |

#### • Model initialisation

|                           | SEAS4<br>re-forecast/forecast      | SEAS5<br>re-forecast/forecast      |
|---------------------------|------------------------------------|------------------------------------|
| Atmosphere initialisation | ERA-Interim/operations             | ERA-Interim/operations             |
| Land initialisation       | ERA-Interim land (36r4)/operations | ERA-Interim land (43r1)/operations |
| Ocean initialisation      | ORA-S4/ORTA4                       | ORA-S5/OCEAN5-RT                   |

#### • Ensemble generation

- Initial condition perturbations
- Stochastic model perturbations

### • Ensemble generation

- Initial condition perturbations
  - Represent uncertainty in data
  - Atmosphere:
    - from ensemble of data assimilation and from leading singular vectors
  - Ocean:
    - From assimilated observations and from forcing fields at the surface

#### • Ensemble generation

- Stochastic model perturbations
  - Flow dependent multiplicative noise
  - Spatially and temporally correlated
  - Three scales
    - Small-scale (fast)
    - Large-scale (slow)
    - Intermediate

- Note on terminology
  - Forecast lead time
    - Months elapsed since initialisation
  - Forecast month
    - Month being discussed
  - Example:
    - "if a forecast is initialised on 1 January, February has 1-month forecast lead time and is month 2 of the forecast"

#### • Evaluation metrics

- Anomaly correlation
- Amplitude ratio
- Root mean square error
- Continuous ranked probability skill score (CRPSS)
- Reliability diagrams

- Evaluation metrics
  - Anomaly correlation
  - Amplitude ratio
  - Root mean square error
  - Continuous ranked probability skill score (CRPSS)
  - Reliability diagrams

- Evaluation metrics
  - Anomaly correlation
  - Amplitude ratio
  - Root mean square error
  - Continuous ranked probability skill score (CRPSS)

### CRPSS = 1 – CRPS\_fs / CRPS\_cl

where *CRPS\_fs* and *CRPS\_cl* are continuous ranked probablity scores (*CRPS*) of model & climatology forecasts

$$CRPS = \int_{-\infty}^{\infty} (P_{fcst}(x) - P_{obs}(x))^2 dx$$

### **SEAS5** Diagnostics: Tropics

### **SEAS5 Diagnostics: Tropics**



## **SEAS5 Diagnostics: Tropics**



### **SEAS5 Diagnostics: Tropics - ENSO**



### **SEAS5** Diagnostics: Tropics - Atlantic



### SEAS5 Diagnostics: Tropics – Indian Ocean



### SEAS5 Diagnostics: Tropics – Indian Ocean



### **SEAS5 Diagnostics: Extratropics - NAO**



### **SEAS5 Diagnostics: Extratropics - PNA**



### **SEAS5 Verification: CRPSS – 2m Temp**





### **SEAS5 Verification: CRPSS – Precip**





## **SEAS5** Verification: Reliability diagrams

#### (a) Tropics

 Skill scores and 95 % conf. intervals (1000 samples)

 Brier skill score:
 0.337 (0.254, 0.413)

 Reliability skill score:
 0.982 (0.970, 0.989)

 Resolution skill score:
 0.355 (0.279, 0.425)



#### (b) Europe (land and sea)

 Skill scores and 95 % conf. intervals (1000 samples)

 Brier skill score:
 0.045 (-0.044, 0.113)

 Reliability skill score:
 0.984 (0.924, 0.991)

 Resolution skill score:
 0.061 (0.029, 0.127)



# Conclusions

- Improvement in equatorial Pacific (ENSO)
- Sea-ice model  $\rightarrow$  improvement in 2m temp
- EEIO variability is more than observed
  - Impacts teleconnections to this part
- Low skill for in IO in NH summer monsoon
- No decadal variability in the Atlantic
- Temperature biases in lwoer stratosphere
  - Could also impact teleconnections